
P r f t n e ® S u b r o u t i n e s
Reference Guide

Volume I
Revision 21.0

DOC10080-2LA

Subroutines
Reference Guide

Volume I
Second Edition

by

John Breithaupt

This guide documents the software operation of the Prime Computer and.
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l icense.

Copyright © 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime
INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM,
PST 100, PT25, PT45, PT65, PT200, PW153, PW200, PW250, RINGNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
9650, 9655, 9750, 9755, 9950, 9955, and 9955II are trademarks of Prime
Computer, Inc.

PRINTING HISTORY — Subroutines Reference Guide, Volume 1

First Edition (DOC10080-1LA) August 1986 for Release 20.2
Second Edition (DOC10080-2LA) August 1987 for Release 21.0

CREDITS

Project Support

Editorial Support

Graphic Support

Production Support

Document Support

David Brooks, Len Bruns,
Matthew Carr, Ellen Desmond,
Camilla Haase, Sheryl Horowitz,
Joan Karp, Alice Landy,
Fran Litterio, Lee McGraw,
Ewan Milne, Margaret Taft

Thelma Henner

Mingling Chang

Judy Gordon

Celeste Henry, Peg Theriault

i i

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list

U n i t e d S t a t e s C u s t o m e r s I n t e r n a t i o n a l

Call Prime Telemarketing,
toll free, at 1-800-343-2533,
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

Contact your local Prime
subsidiary or distributor.

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

i n

Contents

r
r

A B O U T T H I S B O O K i x

1 SUBROUTINES AND LIBRARIES

I n t r o d u c t i o n 1 - 1
Major Functions of Subroutines 1-2
S t a n d a r d L i b r a r i e s 1 - 5
Shared and Unshared Libraries 1-7
S ta t i c and Dynamic L ib ra r i es 1 -8
D y n a m i c E n t r y p o i n t s (D Y N Ts) 1 - 9
S e a r c h R u l e s L i s t s 1 - 1 0
Link ing and Loading L ibrar ies 1-11
Subroutines and Addressing Modes 1-13

2 USING SUBROUTINES

I n t r o d u c t i o n 2 - 1
C a l l i n g S u b r o u t i n e s 2 - 1
C a l l i n g F u n c t i o n s 2 - 2
S u b r o u t i n e A r g u m e n t s 2 - 2
How to Read SYSCOM Fi les 2-8

3 CALLING SUBROUTINES FROM BASIC/VM

C a l l F o r m a t 3 - 1
S Y S C O M K e y s 3 - 2

System Subroutines Not Recognized
b y B A S I C / V M 3 - 2

D a t a T y p e s 3 - 2

4 CALLING SUBROUTINES FROM C

C a l l F o r m a t 4 - 1
The FORTRAN Storage C lass 4 -2
Using the -OLDFORTRAN and

- N E W F O R T R A N O p t i o n s 4 - 2
Using the -NOCONVERT Option 4-3
U s i n g S Y S C O M F i l e s 4 - 3
D a t a T y p e s 4 - 4

5 CALLING SUBROUTINES FROM COBOL

C a l l F o r m a t 5 - 1
Using Numeric Equivalents of

S Y S C O M K e y s 5 - 1
D a t a T y p e s 5 - 2

6 CALLING SUBROUTINES FROM FORTRAN

C a l l F o r m a t 6 - 1
U s i n g S Y S C O M F i l e s 6 - 1
D a t a T y p e s 6 - 2

CALLING SUBROUTINES FROM PASCAL

C a l l F o r m a t 7 - 1
U s i n g S Y S C O M F i l e s 7 - 2
D a t a T y p e s 7 - 3

8 CALLING SUBROUTINES FROM PL/I

C a l l F o r m a t 8 - 1
The OPTIONS(SHORTCALL) Declaration 8-2
U s i n g S Y S C O M F i l e s 8 - 3
D a t a T y p e s 8 - 3

9 CALLING SUBROUTINES FROM PMA

C a l l F o r m a t 9 - 1
Calling Subroutines from V-mode and

I - m o d e P M A 9 - 2
Calling Subroutines from R-mode PMA 9-2
U s i n g S Y S C O M F i l e s 9 - 2
D a t a T y p e s 9 - 3

APPENDICES

A FORTRAN In te rna l Sub rou t i nes A -1

I n t e r n a l S u b r o u t i n e s A - 1
I n t r i n s i c F u n c t i o n s A - 4
F l o a t i n g - p o i n t E x c e p t i o n s A - 4

v i

B Arithmetic Routines Callable from PMA

I n t r o d u c t i o n B - l
F o r m a t a n d A r g u m e n t s B - l
S i n g l e - a r g u m e n t S u b r o u t i n e s B - 5
T w o - a r g u m e n t S u b r o u t i n e s B - 7

C D a t a T y p e E q u i v a l e n t s C - l

I N D E X O F S U B R O U T I N E S S X - 1
I N D E X X - l

r
r

V l l

About This Book

The Subroutines Reference Guide gives a systematic description of the
standard Prime subroutine libraries. Each standard subroutine library
is a binary file containing subroutines that perform a variety of
related programming tasks. Whenever these tasks are to be performed,
programmers can use the subroutines in the standard libraries instead
of writing their own routines. Programmers must write subroutines only
to perform specialized tasks for which no standard subroutines exist.

OVERVIEW OF THIS SERIES

The Subroutines Reference Guide comprises four volumes
of each volume are as follows.

The contents

Volume I

Chapter 1 provides a general introduction to subroutines and subroutine
l i b r a r i e s .

Chapter 2 describes how to call subroutines and functions.

Chapters 3 through 9 describe how to choose proper data types for
parameters of subroutines called from programs written in the following
languages: BASIC/VM, C, COBOL, FORTRAN, Pascal, PL/I, and PMA. Each
of these chapters describes a language's data description formats and
subroutine calling sequence. Each chapter also emphasizes the
necessity of making data type descriptions in the calling language

i x

compatible with the data type descriptions used by the subroutines
called; at the object code level, the calling language and the
subroutines called must specify the same data types.

Most of the descriptions of subroutines in the Subroutines Reference
Guide use a PL/I calling format. Chapters 3 through 8 in Volume I
contain tables listing data types in the different Prime programming
languages that are equivalent to those in PL/I and FORTRAN.

The remaining three volumes in the series describe in detail the
different subroutine l ibraries.

Volume II

Volume II describes several functional groups of subroutines, dealing
with the access to and management of file system entities, the
manipulation of EPFs in the execution environment, and the use of a
number of command environment functions. Three chapters are devoted to
subroutines related to the file system, and one chapter each is devoted
to those related to EPF management and to the command environment.

Volume III

Volume III describes system subroutines. The subroutines covered in
this volume are the general system calls to the operating system and
standard system library. This excludes file and EPF manipulation,
which are described in Volume II.

Volume IV

Volume IV presents several mature libraries: the Input/Output Control
System (IOCS) l ibraries and other I/O-related subroutines, the
Application libraries, the Sort libraries, and MATHLB.

IOCS provides device-independent I/O. The chapters on IOCS provide
descriptions of the device-independent subroutines as well as those
device-dependent subroutines simplified by IOCS. Another section
provides descriptions of the synchronous and asynchronous device-driver
subroutines.

Sections on the Application Library, the Sort Libraries, and the
FORTRAN Matrix Library provide descriptions of other program
development subroutines especially useful for FORTRAN programs.

SUGGESTED REFERENCES

The Prime User's Guide (DOC4130-4LA) and its updates (UPD4130-41A,
UPD4130-42A) contain information on system use, directory structure,
the condition mechanism, CPL files, ACLs, and how to load and execute
files with external subroutines. Language programmers will also need
the reference guide for their particular languages.

Programmers who wish more advanced information on library management or
I/O manipulation should consult the System Administrator's Guide,
Volume 1: System Configurat ion (DOC10131-1LA) and System
Administrator's Guide, Volume 2: Communication Lines and Controllers
(DOC10132-1LA).

The following related Prime publications are also available:

Advanced Programmer's Guide, Volume 1: BIND and EPFs
(DOC10055-1LA)

Assembly Language Programmer's Guide
(DOC3059-2LA)

BASIC/VM Programmer's Guide
(FDR3058-101A, COR3058-001, COR3058-002, UPD3058-33A)

C User's Guide
(DOC7534-3LA)

COBOL 74 Reference Guide
(DOC5039-2LA, UPD5039-21A, UPD5039-22A)

CPL User's Guide
(DOC4302-3LA)

FORTRAN Reference Guide
(FDR3057-101A, COR3057-001, COR3057-002, UPD3057-33A, UPD3057-34A)

FORTRAN 77 Reference Guide
(DOC4029-4LA, UPD4029-41A, UPD4029-42A))

Pascal Reference Guide
(DOC4303-4LA, UPD4303-31A)

PL/I Reference Guide
(DOC5041-1LA, UPD5041-11A)

Programmer's Guide to BIND and EPFs
(DOC8691-1LA)

SEG and LOAD Reference Guide
(DOC3524-192L, UPD3524-21A)

System Architecture Reference Guide
(DOC9473-2LA)

x i

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Terminal input
may be entered in either uppercase or lowercase.

Convention Explanation Example

UPPERCASE In command formats, words in
uppercase indicate the actual
names of commands, statements,
and keywords. They can be
entered in either uppercase
or lowercase.

SLIST

lowercase In command formats, words
in lowercase indicate items
for which the user must
substitute a suitable value.

LOGIN user-id

under l in ing
i n

examples

In examples, user input is
underlined but system prompts
and output are not.

OK, SEG -LOAD

Brackets
[]

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items (0-n).

CALL xxx (key [,altrtn]

Braces
{ }

Braces enclose a vertical
list of items. Choose one
and only one of these items. iCLINEQ

LINEQ
DLINEQ

E l l i p s i s An ellipsis indicates that
the preceding item may be
repeated.

i t e m - x [, i t e m - y] . .

Parentheses
()

In command or statement
formats, parentheses must be
entered exactly as shown.

CALL TIMDAT(array, n)

Hyphen Wherever a hyphen appears in
a command line option, it is
a required part of that
opt ion.

SPOOL -LIST

x n

Subroutines and Libraries

INTRODUCTION

Subroutines are modules of object code that can be called by programs
or other modules to perform commonly required tasks. Subroutines can
also be called to perform tasks that the calling program or module
cannot perform as efficiently, or cannot perform at all.

Prime supplies a number of standard subroutines, known as system
subroutines. Some of these are part of the PRIMOS operating system.
The others are contained in standard subroutine libraries. Subroutine
libraries are files that contain subroutines which perform similar or
re lated tasks.

Users can write their own subroutines to perform tasks not performed by
the system subroutines. However, this guide deals only with system
s u b r o u t i n e s .

This chapter discusses the following topics:

• Major functions of system subroutines.

• Standard Libraries. Prime supplies a wide variety of standard
libraries that support basic system operation.

• Shared and Unshared Libraries. More than one program can use a
shared library. However, a program must use its own separate
copy of an unshared library; the system loads this copy with
the program that uses it.

1 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

• Static-mode libraries. Prime supplies these libraries. The SEG
and BIND utilities link them to the programs that call them.

• Library EPFs (Executable Program Files). These libraries
contain subroutines to which programs link themselves when they
are executed. The BIND utility creates library EPFs. Prime
supplies some library EPFs.

• DYNTs (Dynamic Entrypoints). Dynts are subroutine names that
are linked with programs. When the programs are executed, the
system uses the dynts to find the starting addresses of the
subroutines.

• Search Rules Lists. These are lists of library EPFs and
directives that contain the entrypoints to which dynts are
converted at run time. The lists tell the system where to
search for the entrypoints.

• Loading and Linking Libraries.

• Subroutines and addressing modes.

MAJOR FUNCTIONS OF SUBROUTINES

System subroutines perform a wide variety of functions. Among these
functions are the following:

• File handling

• I/O processing

• Supporting synchronous and asynchronous controllers

• Semaphore handling

• Supporting the condition mechanism

File Handling

File-handling system subroutines support communication between the
PRIMOS file structure and user programs. For example, they can verify
the existence of a file before the program accesses it, delete a file,
or verify that a filename entered by a user is valid. File-handling
subroutines manage the ACL system, which controls file access.

Second Edition 1-2

SUBROUTINES AND LIBRARIES

Many of the file-handling subroutines allow a program to access files
directly through file unit numbers, a method which is faster than
access by filenames. For example, at the program level the filename
TEXT and the file unit number 1 can be associated by the PRIMOS
subroutine SRCH$$, as in the following call:

CALL SRCH$$ (K$WRIT, 'TEXT', 4, 1, TYPE, code)

Afterwards, other subroutines can access the file by unit number.

Some file-handling subroutines are internal to PRIMOS, and others are
available as application library routines. Volume II of this guide
discusses file-handling subroutines.

I/O Processing

The I/O subroutines are those relating to data transfers and device
operations. Subroutines managed by the Input/Output Control System
(IOCS) perform input and output between the Prime computer and the
d i sks , t e rm ina l s , and pe r i phe ra l dev i ces w i t h i n t he sys tem
configura t ion .

The I/O subroutines include:

• Subroutines that function as device-independent drivers which
route I/O requests to specific drivers, thus allowing the user
to maintain device independence

• Disk subroutines that perform disk input/output operations

• Subroutines that transfer data between a user terminal or
paper-tape device and memory

• Per ipheral device rout ines that contro l l ine pr inters, a
printer/plotter, serial and parallel card readers, and 7-track
and 9-track tapes

Volume IV of this guide describes IOCS subroutines and other
I/O-related subroutines.

Supporting Synchronous and Asynchronous Controllers

A number of subroutines move data for assigned synchronous or
asynchronous l ines. Volume IV of this guide describes these
subroutines.

1 - 3 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Semaphore Handling

Semaphores are hardware components which ensure that only a set number
of users access certain system resources at a time, and that
reallocation of the resource is orderly and controlled. PRIMOS
includes a set of subroutines that provide access to Prime's semaphore
pr imi t ives and to internal t iming faci l i t ies. These subrout ines
support user applications that have realtime requirements or need to
synchronize execution with other user programs. Volume III of this
guide describes these subroutines.

Supporting the Condition Mechanism

A program can activate the condition mechanism when it encounters
unexpected occurrences such as:

• End of file

• Illegal address

• An attempt to divide by 0

• Use of the BREAK key from a terminal

The condition mechanism either repairs the problem and restarts the
program, or terminates the program in an orderly manner. To do this,
the condition mechanism activates diagnostic or remedial code blocks
called on-units.

Users writing in FORTRAN 66 (FTN), FORTRAN 77 (F77), PL/I, Pascal, or
PMA can define their own on-units. However, al l users are
automatically protected by PRIMOS system on-units. When an error
condition occurs, the condition mechanism looks for on-units within the
executing procedure. If it finds none, or if the procedure's on-units
continue to signal the condition, the condition mechanism searches
first through the calling procedures' on-units and then through the
system's on-units, activating the first appropriate on-unit it finds.

Volume III of this guide describes subroutines that support the
condition mechanism.

S e c o n d E d i t i o n 1 - 4

SUBROUTINES AND LIBRARIES

STANDARD LIBRARIES

This section describes the functions of the following major libraries
and subroutine groups:

• FORTRAN library

• General PRIMOS subroutines

• Matrix library

• Applications library

• Sort libraries

• Spool libraries

To load these libraries, use the LI command of the BIND and SEG
utilities. For a fuller discussion of the use of this command, see the
section in this chapter titled LINKING AND LOADING LIBRARIES.

FORTRAN Library

The FORTRAN library is indispensable for the functioning of most other
libraries because references to system subroutines are resolved in the
FORTRAN library. The FORTRAN library contains:

• Many PRIMOS subroutines, such as those in the IOCS library and
all PRIMOS file-handling subroutines.

• FORTRAN function subroutines and mathematical subroutines
described in the FORTRAN Reference Guide and the FORTRAN 77
Reference Guide.

• Arithmetic subroutines that the FORTRAN compiler uses. Some of
these subroutines can also be called from PMA. These routines
p e r f o r m o p e r a t i o n s o n s i n g l e - p r e c i s i o n i n t e g e r s ,
single-precision and double-precision floating point numbers,
and complex numbers.

1 - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

General PRIMOS Subroutines

General PRIMOS subroutines perform the following functions:

• Managing system information

• Managing global variables

• Handling phantoms

• File system management

Matrix Library

MATHLB (FORTRAN matrix subroutines) contains subroutines that

• Perform matrix operations

• Solve systems of simultaneous linear equations

• Generate permutations and combinations of elements

These subroutines are currently available only in R mode.

Applications Library

The Applications library contains easy-to-use service subroutines which
range from simple subroutines which do little more than call
lower-level subroutines, to subroutines that perform functions such as:

• String handling

• User query

• System information retrieval

• Mathematical operations

• Conversion

• File system management

• Parsing

Subroutines in this library often duplicate the work of subroutines in
the File System library, or even call those routines. For example, to
delete a file, you may use SRCH$$ or TSRC$$ in the File System library,
or you may call DELE$A in the Applications library. DELE$A requires
fewer arguments than the other subroutines, but it may be slightly
slower because it makes calls to three subroutines.

S e c o n d E d i t i o n 1 - 6

SUBROUTINES AND LIBRARIES

Sort Libraries

Four libraries contain sort subroutines:

• VSRTLI, a V-mode library containing subroutines that
perform most file sorting and merging operations

• SRTLIB, the R-mode version of VSRTLI

• VMSORT, a V-mode library containing several in-memory
sort subroutines and a binary search subroutine

• MSORTS, the R-mode version of VMSORT

Spool Libraries

The spooler subsystem enables users of a Prime system or network to
print their files in an efficient and organized manner. Options of the
spooler subsystem enable the user to defer printing to some later time,
specify the site at which the job is to print, and specify the number
of copies to be printed. There are two libraries of subroutines that
support spooler subsystems:

• SPOOL$.BIN, an R-mode library

• VSPOOL.BIN, a V-mode library

SHARED AND UNSHARED LIBRARIES

All libraries can exist in both shared and unshared versions. A shared
library allows all programs to access its subroutines. For this
reason, each system needs only one copy of a shared library.

A program that is to use subroutines in an unshared library must make
its own copies of the subroutines. The system places the copies in the
user space of the program's owner and links the program with the copies
to form a single executable module. When you run a program linked to
subroutines in an unshared library, the system allocates additional
memory for it and for all the subroutines it calls. This memory
remains allocated until the user logs out or frees segments. To save
memory, use shared libraries whenever possible.

By convention, unshared libraries have names that begin with the letter
N (for nonshared). For example, the unshared Pascal library is named
NPASLIB.BIN, while the shared Pascal library is named PASLIB.BIN.

1 - 7 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

STATIC AND DYNAMIC LIBRARIES

All libraries belong to one of two categories: those that are loaded
statically, and those that are loaded dynamically. Libraries that are
loaded statically are referred to as static-mode libraries. Those that
are loaded dynamically are referred to as library EPFs.

Stat ic -mode L ibrar ies

The system always loads a static-mode library into the same system
segment. The library remains in this segment, where it is available
for use whenever it is needed. All static-mode libraries are shared
l i b r a r i e s .

Ordinarily, only the System Administrator needs to be aware that a
given library is loaded in static mode. If you use the appropriate LI
command in a BIND or SEG session, the standard system search rules
ensure that the static-mode libraries are searched. Your system may
have several static-mode shared libraries included in the system build;
ask your System Administrator for details.

Library EPFs

A library EPF contains executable subroutines that link to a program
when the program is executed. The program links to entrypoints within
the library EPF by means of the dynamic linking mechanism. When a
library EPF is called, PRIMOS maps it to any segment available. If the
library is called again, the system may map the library into a totally
di fferent segment, provided that the l ibrary has not been mapped
between calls.

Library EPFs are created by the BIND utility. They have the suffix
.RUN (latest version) or .RPn (for versions in use when BIND creates a
newer version).

Classes of Library EPFs

Library EPFs are divided into two classes, program class and process
c l a s s .

Program-class libraries: Use these libraries when no data is to be
passed from one program call ing the subroutines to the next. For
example, FORTRAN_IO_LIBRARY.RUN is a program-class library because it
includes certain file control blocks and other variables that must be
reset for each execution of a program.

Process-class libraries: Use these libraries when some data may be
passed from one program call ing the subroutines to the next. For
example, SYSTEM_LIBRARY.RUN is a process-class library. It need not be
rein i t ia l ized whi le the process cont inues, because i t contains only

S e c o n d E d i t i o n l - l

SUBROUTINES AND LIBRARIES

l inkages (Ind i rect Pointers and Entry Contro l B locks) that do not
change after the l ibrary is ini t ial ized.

For a thorough discussion of the di fference between process-class
l i b r a r i e s a n d p r o g r a m - c l a s s l i b r a r i e s , r e f e r t o t h e A d v a n c e d
Programmer's Guide, Volume 1, BIND and EPFs.

DYNAMIC ENTRYPOINTS (DYNTS)

Programs can use dynamic entrypoints, or dynts, to access libraries of
general PRIMOS subroutines, l ibrary EPFs, and static-mode l ibraries.
To access a subroutine, the system converts the subroutine's dynt into
an address for the start of that subroutine. The process of converting
a dynt into an address is referred to as snapping the dynt. Dynts are
snapped at runtime. BIND links the binary file containing the dynts
with a program but does not link the subroutine code.

The code for any procedure referenced by a dynt can be in any of the
f o l l o w i n g :

• A library EPF

• A segment used by a static-mode shared library

• PRIMOS

The location of the code depends on runtime conditions.

For example, suppose that a program requests a subroutine from the
Pascal> l ibrary PASLIB.BIN, and PASLIB.BIN holds a dynt to th is
subroutine, which is resident in the library EPF PASCAL_LIBRARY.RUN.
If the dynt is not mapped, the system uses the search rules and system
hashing tables to call the .RUN file to do the mapping. To access the
subroutine, the program branches to the address currently given to the
dynt; this address is established when the library EPF maps the dynt
to the system. The program then branches to the subroutine it needs.

If PASLIB.BIN holds a dynt to a subroutine resident in a static-mode
library, the program branches to its static address at the proper time.
Individual user space holds a single copy of pure code for any
subroutine. It is not burdened with reserving static system segments
to hold possibly unused code.

Dynts for subroutines that are not in R mode may require several
library EPFs. For example, giving the SEG or BIND command LI PASLIB
may cause the sys tem to use dyn ts tha t ca l l subrou t ines f rom
PASCAL_L IBRARY.RUN, wh ich i n t u rn con ta ins dyn ts t ha t requ i re
SYSTEM_LIBRARY.RUN and PRIMOS_LIBRARY.RUN. These library EPFs should
be part of your system search rules l ist . (See the sect ion t i t led
Search Rules Lists below.)

1 - 9 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

For more information about how dynts are used to access subroutines,
see the sec t i on t i t l ed Dynamic L ink ing Mechan i sm in t he
Advanced Programmer's Guide, Volume 1.

SEARCH RULES LISTS

PRIMOS uses search rules lists to determine pathnames for directories,
files, and entrypoints. PRIMOS provides every user with five search
lists: ATTACH$, INCLUDE$, BINARY$, COMMAND$, and ENTRY$. It uses
ATTACH$ to search partitions for top-level directories. It uses
INCLUDE$, BINARY$, and COMMAND$ to search directories for source,
binary, and executable code files, respectively. It uses ENTRY$ to
search library EPF files for entrypoints.

You can modify the contents of these search lists and create other
search lists as required. These search lists and the search rules
facility are described in greater detail in the Advanced Programmer's
Guide, Volume II.

As stated above, PRIMOS uses the ENTRY$ search list to locate
entrypoints when it resolves dynts. ENTRY$ contains a keyword,
-STATIC_MODE_LIBRARIES, that causes PRIMOS to search static-mode
libraries; if the entrypoint is found there, PRIMOS stops searching.
ENTRY$ also contains a separate search rule for each library EPF. If
the ENTRY$ search list does not contain a search rule for a library
EPF, it cannot resolve dynts to entrypoints in that library at runtime.
If a dynt is linked successfully, but is not replaced with the
entrypoint link to the code at execution, an error occurs reporting
that a subroutine cannot be found. When this error occurs, verify that
the appropriate library EPF is listed in the ENTRY$ search list. If
you create a private subroutines library, you must add the pathname of
that library to your ENTRY$ search list.

There are three PRIMOS commands and several subroutines that you can
use to check and modify the contents of your search lists. You can use
the SET_SEARCH_RULES (SSR) command to set search rules in a search
list. You can use the EXPAND_SEARCH_RULES (ESR) command to use a
search list to determine the absolute pathname of a file or entrypoint.
You can also use ESR to test whether a search list can locate a
particular item. You can use the LIST_SEARCH_RULES (LSR) command to
list the contents of your search lists. These commands are further
described in the PRIMOS Commands Reference Guide; search rule
subroutines are described in the Subroutines Reference Guide, Volume
I I .

S e c o n d E d i t i o n 1 - 1 0

SUBROUTINES AND LIBRARIES

Both the search rule and the file it refers to must be present for a
runtime search to be successful. For example, if you are trying to run
a CBL program, and within BIND you successfully linked LI CBLLIB, you
still need the following:

• A copy of the library EPF CBL_LIBRARY.RUN on your system

• An ENTRY$ search l ist that includes the pathname to
CBL_LIBRARY.RUN

If the ENTRY$ search list does not contain the pathname entry, you can
add this entry to your own ENTRY$ search rules file and then use the
SSR command to establish the new ENTRY$ search list; or, you can ask
the System Administrator to add this entry to the default ENTRY$ search
list for all users. If this pathname is present in ENTRY$ but the
system cannot find the subroutines, then the library either was loaded
with a different pathname or was not loaded at all. See your System
Administrator for help.

Note

Be careful not to assign names of PRIMOS subroutines to your
own library EPF entrypoints. If the name of one of your
entrypoints is identical to one named in a public library (for
example, PASCAL_LIBRARY.RUN), the library that is listed first
in the ENTRY$ search list always provides the subroutine. This
can result in a PRIMOS subroutine being executed instead of a
user-written subroutine with the same name.

LINKING AND LOADING LIBRARIES

All PRIMOS subroutine libraries have been compiled before they are
placed in the system. A source code library that has been compiled is
known as a binary library. Binary libraries that are to be used by a
program must be loaded into the program's runtime file (memory image).
All object files loaded into one runtime file must be in the same
addressing mode. (See the section titled Subroutines and Addressing
Modes, below.)

Binary libraries are stored in the directory LIB. To get a list of all
the libraries in the directory LIB, attach to that directory and give
the LD command. Some libraries in LIB are not described in this guide.
The subroutines in some of these libraries are discussed in the manuals
for specific products, such as PRIMENET, FORTRAN, the Block Device
Interface (BDVLIB), and MIDASPLUS (KIDALB and VKDALB). The calls to
subroutines in other libraries, such as RPG, are produced automatically
by compilers; the details do not concern the programmer.

1 - 1 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

When you run the SEG or BIND programs to link a binary library to a
program, use the command

LI library-name

where library-name designates the name of a library, such as VSRTLI or
VAPPLB, to be loaded with the program. You do not need to include the
.BIN suffix in the LI command. Use the command

L I

at the end of a SEG or BIND session to link your program to the system
default libraries, such as the FORTRAN library. You must use the LI
command even if your program does not call any subroutines. While you
do not need the default libraries command for this situation, you do
not incur any system penalties by including it. The BIND program may
display the message BIND COMPLETE before you give this command.

Separate versions of the libraries are required for use with R-mode and
V-mode files. Table 1-1 describes the shared libraries and their
corresponding pathnames for R mode and V mode. It is a good idea to be
familiar with the names of these libraries, so that you do not
inadvertently use any of these names for your own libraries.

Table 1-1
Shared Library Pathnames

L i b r a r y R-mode File V-mode File

PRIMOS (including LIB>FTNLIB.BIN LIB>PFTNLB.BIN
file system,
condition mechanism,
c o n t r o l l e r s ,
semaphore handlers,
and IOCS)

A p p l i c a t i o n LIB>APPLIB.BIN LIB>VAPPLB.BIN
In-memory sorts LIB>MSORTS>BIN LIB>VMSORT.BIN
M a t r i x LIB>MATHLB.BIN not ava i lab le
S o r t LIB>SRTLIB.BIN LIB>VSRTLI.BIN
Spool LIB>SPOOL$.BIN LIB>VSPOO$.BIN

If you get a runtime error message when you try to execute a program
that calls subroutines, BIND the program again. Then, after the LI
command, use MAP -UNDEFINED (or MAP 3 with SEG) to display the names of

Second Edition 1-12

SUBROUTINES AND LIBRARIES

any missing subroutines. If necessary, refer to the subroutines'
descriptions in the other volumes of this guide for information about
the libraries required by the subroutines. MAP -UNDEFINED, along with
other linking options, is explained in detail in the Programmer's Guide
to BIND and EPFs and in Volume I of the Advanced Programmer's Guide.
The MAP 3 option for SEG is explained in the SEG and LOAD Reference
Guide.

The loading process is different for BASIC/VM, which performs the
compi l ing , l ink ing, load ing, and execut ion wi th in the spec ia l
environment it creates. For information about BASIC/VM, see the
BASIC/VM Programmer's Guide.

SUBROUTINES AND ADDRESSING MODES

Some subroutine libraries are available in only some of the addressing
modes that Prime currently supports: R mode, V mode, and I mode. Most
subroutines are available only in V mode and I mode. However, a number
of older system subroutines exist only in R mode. R-mode subroutines
can be called only from R-mode programs. To compile a program written
in FTN in R mode, you must specify the compile option -32R or -64R.

All standard subroutines introduced with Revision 19.4 or later
revisions are invoked through direct entry calls, by means of dynts.
Direct entry calls execute subroutines within PRIMOS, and are faster
than other calls. Direct entry calls are available only in V mode and
I mode.

To find out which addressing modes a subroutine is available with, see
the subroutine's description in one of the subsequent volumes of this
guide. For subroutines available in I mode, and many subroutines in V
mode, the usage descriptions are in PL/I notation. For certain
subroutines meant for use by FORTRAN programmers, the Usage
descriptions are written in FTN. For subroutines available only in R
mode, the usage descriptions are in FTN. Some Input-Output Control
System (IOCS) and applications library subroutines are meant to
interface with FTN programs; accordingly, these Usage descriptions are
written in FTN.

For more information about addressing modes, see the System
Architecture Reference Guide.

1 - 1 3 S e c o n d E d i t i o n

Using Subroutines

INTRODUCTION

This chapter explains how to use the standard subroutines supplied by
Prime. It covers the following topics:

• How to call subroutines and functions

• How to specify arguments of subroutines and functions

• Data types used by subroutines and functions written in FORTRAN
and PL/I

• How to use and interpret key codes, argument codes, and error
codes

CALLING SUBROUTINES

Each of the calling languages discussed in chapters 3 through 9 of this
volume has its own statement for calling subroutines. For example,
PL/I uses a statement of the following form to call subroutines.

CALL subroutine(argument1, argument2...);

2 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Subroutine is the name of the subroutine called. The subroutine
accepts input from and returns output to the arguments specified as
argumentl, argument2, and so on. For example, the subroutine GV$GET,
as called by the PL/I statement shown below, retrieves the value of a
variable named gvname and returns it to a variable named gvalue. The
argument size specifies the length in characters of gvalue, and code
receives the error code returned by GV$GET.

CALL GV$GET(GVNAME, GVALUE, SIZE, CODE);

For information about the call statement for a particular calling
language, see the chapter in this volume that describes how to call
subroutines from that language.

CALLING FUNCTIONS

Some of the modules described in the other volumes of this guide are
functions rather than subroutines. Functions differ from subroutines
in the way that they must be invoked by the calling program and in the
way that they return output to the calling program. A function accepts
an argument or arguments and returns a value, which can then be
assigned to a variable or used in expressions. To call functions, use
formats such as the following:

variable = function(argument or arguments);

For example, the function DELE$A, shown below, accepts two arguments
and assigns a value to the variable valuel:

valuel = DELE$A(argl, arg2);

You can also use a function with relational, arithmetic, or other
operators.

SUBROUTINE ARGUMENTS

Most subroutines expect to receive from the calling program one or more
arguments in a given order. If the subroutine receives fewer arguments
than it expects, a message such as POINTER FAULT or ILLEGAL SEGNO is
displayed when the program is executed. If too many arguments are
passed, the subroutine ignores the extra arguments.

S e c o n d E d i t i o n 2 - 2

USING SUBROUTINES

Subroutines and the programs that call them need not be written in the
same language. However, the arguments that a program passes to a
subroutine or function must be of data types that correspond to the
data types expected by the subroutine or function. Chapters 3 through
9 of this volume describe how subroutine arguments must be declared in
different call ing languages in order to be acceptable to subroutines
and func t ions . The fo l l ow ing paragraphs descr ibe the da ta t ypes
commonly expected and returned by system subroutines and functions
written in PL/I and FTN.

PL/I Data Types

Subroutines and functions written in PL/I expect parameters and return
values of the following data types:

CHAR(n)
Also specified as CHARACTER(n) , CHARACTER(n) NONVARYING.
Specifies a character string or array of length n. A CHAR(n)
string is stored as a byte-aligned string, one character per byte.
A byte is 8 bits.

CHAR(*)
Also CHARACTER(*), CHARACTERS) NONVARYING. Specifies a character
s t r i n g o r a r r a y w h o s e l e n g t h i s u n k n o w n a t t h e t i m e o f .
declaration. A CHAR(*) string is stored as a byte-aligned string,
one character per byte.

CHAR(n) VAR
Also CHARACTER(n) VARYING. Specifies a character string or array
whose length can be a maximum of n characters. The first 2 bytes
(one halfword) of storage for a CHAR(n) VAR string contain an
i n t e g e r t h a t s p e c i fi e s t h e c u r r e n t s t r i n g l e n g t h ; t h e s e a r e
followed by the string, one character per byte.

CHAR(*) VAR
Also CHARACTER(*) VARYING. Specifies a character string or array
whose maximum length is unknown at the time of declaration. The
first 2 bytes (one halfword) of storage for a CHAR(*) VAR string
con ta in an i n tege r t ha t spec i fies t he cu r ren t s t r i ng l eng th ;
these are followed by the string, one character per byte.

FIXED BIN
Also FIXED BINARY, BIN, F IXED BIN(15) . Spec ifies a 16-b i t
(halfword) signed integer.

FIXED BIN(31)
Specifies a 32-bit signed integer.

(n) FIXED BIN
Specifies an integer array of n elements. See below for more
information about arrays-.

2 - 3 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

FLOAT BIN
Also FLOAT BIN(23), FLOAT. Specifies a 32-bit (one-word)
floating-point number.

FLOAT BIN(47)
Specifies a 64-bit (double-word) floating-point number.

B IT (l)
Specifies a logical (Boolean) value. A bit value of 1 means TRUE;
a value of 0 means FALSE.

BIT(n)
Specifies a bit string of length n. BIT(n) ALIGNED means that the
bit string is to be aligned on a halfword boundary.

POINTER
Also PTR. Specifies a POINTER data type. A pointer is stored in
three halfwords (48 bits). If the pointer will point only to
halfword-aligned data, it may occupy two halfwords (32 bits). The
item to which the pointer points is declared with the BASED
attribute (for example, BASED FIXED BIN).

POINTER OPTIONS (SHORT)
Same as POINTER except that it always occupies only two halfwords
and can point only to halfword-aligned data.

Note

When used as a parameter, POINTER can be used interchangeably
with POINTER OPTIONS (SHORT).

When used as a returned function value, POINTER OPTIONS (SHORT)
can be used in any high-level language except Pascal or
64V-mode C, which require returned pointers to be three
halfwords; in these cases, POINTER must be used. C in 321
X-mode accepts only halfword-aligned, two-halfword pointers,
and therefore requires the use of POINTER OPTIONS (SHORT).

Declaring Arrays and Structures in PL/I

Sometimes an argument is defined as an array or a structure. For
example, the following DCL statement declares item as an array of ten
integers.

DCL ITEMS(10) FIXED BIN;

In the DCL statement above, you can replace the keywords FIXED BIN with
any data type. By default, arrays are indexed starting with the
subscript 1; the first integer in this array is ITEMS(1).

S e c o n d E d i t i o n 2 - 4

USING SUBROUTINES

To declare an array with a starting subscript other than 1, use a range
specification, as for example:

DCL WORD(0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 to 1023, and its elements are
referenced by POINTER variables.

A structure is equivalent to a record in COBOL or Pascal. For example,
the following DCL statement declares a structure named FS_JDATE.

DCL 1 FS_DATE,
2 YEAR BIT(7),
2 MONTH BIT(4),
2 DAY BIT(5),
2 QUADSECONDS FIXED BIN(15);

In the DCL statement above, the numbers 1 and 2 indicate the relative
level numbers of the items in the structure. Always declare the name
of the structure at level 1. After the level number, give the name of
the data item and its data type. In this example, the structure
occupies a total of 32 bits.

Since no names are given to data items in parameter lists, you can
declare the array ITEMS simply as (10) FIXED BIN. Similarly, you can
declare the structure FS_DATE as

(..., 1, 2 BIT(7), 2 BIT(4), 2 BIT(5), 2 FIXED BIN(15), ...)

FTN Data Types

Subroutines and functions written in FTN expect parameters and return
values of the following data types:

COMPLEX
Specifies a 64-bit element to hold a complex number, defined as
two 32-bit (REAL*4) entities, the first for its real and the
second for its imaginary part.

INTEGER*2
Also INTEGER. Specifies a 16-bit (halfword) signed integer. Bit
1 is the sign bit.

INTEGER*4
Specifies a 32-bit signed integer. Bit 1 is the sign bit.

2 - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

LOGICAL
Specifies a logical (Boolean) value. Within a 16-bit halfword,
the first 15 bits must be 0, and the 16th bit indicates .FALSE,
with 0 and .TRUE. with 1.

REAL*4
Also REAL. Specifies a 32-bit signed floating-point number. Bit
1 is the sign bit. Bits 2 to 24 are the mantissa. Bits 25 to 32
are the exponent.

REAL*8
Also DOUBLE PRECISION. Specifies a 64-bit signed floating-point
number. Bit 1 is the sign bit. Bits 2 to 48 are the mantissa.
Bits 49 to 64 are the exponent.

Data Types Variants for FORTRAN

Other declarations in the Usage section suggest the elements for which
FTN has no data type:

BUFFER(1)
Given the data type of INTEGER*2, this shorthand declaration for
an array suggests a character string or array whose length is
unknown at the time of declaration (an equivalent to CHAR(*) in
PL/I). The user must DIMENSION the array with an adequate size.
If the size is known to be (n), then the variable declaration is
given as BUFFER(n).

LOC(variable)
Specifies the equivalent of a POINTER data type. This built-in
FORTRAN function automatically provides the prerequisite three
halfwords (48 bits) for the pointer.

Key Codes and Argument Codes

In calls to many subroutines, key codes and argument codes can be used
in place of numeric arguments. For example, in the subroutine call

CALL GPATH$ (K$INIA...other arguments...)

the key code K$INIA corresponds to the number 4 and tells GPATH$ to
return the pathname of the user's origin directory.

Files in the SYSCOM directory define which numbers the codes represent.
If the proper SYSCOM file is inserted in a program, the codes defined
in that file can be used by the program as arguments in calls to many
subroutines. For information about how to insert a SYSCOM file into a
program, see the chapter in this volume that explains how to call

S e c o n d E d i t i o n 2 - 6

USING SUBROUTINES

subroutines from the program's language. It is good practice to use
key codes and argument codes whenever possible.

Key codes are of the form K$yyyy, where yyyy is a string of up to four
characters. For example, K$CURR is a key code. Key codes can be used
with the subroutines described in Volumes II and III of this guide.

Argument codes are of the form A$yyyy, where _______ is a string of up to
four characters. For example, A$DEC is an argument code. Argument
codes are used in calls to application library subroutines; these
subroutines are described in Volume IV of this guide.

Key codes are
SYSCOM>KEYS.INS.
values in the
language stands
calling program,
substituted for
programs written
codes defined in
specify the nume

a s s o c i a t e d w i t h n u m e r i c v a l u e s i n t h e fi l e
language; argument codes are associated with numeric
file SYSCOM>A$KEYS. INS. ____________. In these file names,
for an abbreviation designating the language of the

Table 2-1 lists the abbreviations that can be
language in the names of files in SYSCOM. Note that

in COBOL, CBL, and BASIC/VM cannot use the keys and
the SYSCOM files; in these languages, programs must

ric equivalents of the keys and codes.

Table 2-1
Language Abbreviations in SYSCOM File Names

Language Abbreviat ion

C CC
FTN, F77 FTN
Pascal PASCAL
PL/I PLl
PMA PMA

Some subroutines accept as a single argument a number of keys or key
codes linked by plus signs (+). For example, the subroutine SRCH$$ is
called by a statement of the following form.

CALL SRCH$$ (action+ref+newfill,...other arguments...)

In this CALL statement, keys corresponding to the parameters action,
ref, and newfill must be linked by plus signs. The subroutine SRCH$$
accepts the sum of these three keys as a single argument. For example,
in the following call to SRCH$$

CALL SRCH$$(K$RDWR+K$ISEG+K$NDAM,...other arguments...)

the key codes K$RDWR, K$ISEG, and K$NDAM are linked by plus signs (+)
into a single argument.

2-7 Second Edition

SUBROUTINES, VOLUME I

Standard Error Codes

Many subroutines include an argument that the subroutine sets to a
standard error code. The error code corresponds to a number reporting
on the success or failure of the call or on some other condition worth
not ing .

Standard error codes are of the form E$xxxx, where xxxx is any
combination of letters. For example, the error code

E$DVIU

corresponds to the number 39, which means Device in Use.

Files named SYSCOM>ERRD.INS.language, where language is an abbreviation
standing for the language of the calling program, associate standard
error codes with numbers. Table 2-1 above lists the abbreviations that
can be substituted for language in the names of files in SYSCOM.

Subroutines return the error code number whether or not you insert the
SYSCOM>ERRD.INS file. However, if you wish to intercept errors and
have your program write error messages, you should include the SYSCOM
file and refer to the error by its code rather than its number.

For more information about standard error codes, see Volume 0 of the
Advanced Programmer's Guide.

HOW TO READ SYSCOM FILES

You can learn the numeric equivalent of a key code, argument code, or
error code by listing the SYSCOM file that defines the code for the
calling language that you are using. A SYSCOM file defines a code on a
line consisting of the code, the code's numeric equivalent, and a
comment describing the significance of the code. A comment symbol (/*)
in front of a code invalidates the code. Codes used with the same
subroutine are grouped together in the SYSCOM file.

Figure 2-1 lists the portion of SYSCOM>KEYS.INS.FTN that defines the
key codes that can be used by any FTN program which invokes the
subroutine SRCH$$. For example, in Figure 2-1, K$RDWR is defined as
the equivalent of the number 3. As the comment following the key
definition indicates, you can use either the key K$RDWR or the number 3
as an argument of SRCH$$ to cause the subroutine to open a file for
reading and writing.

S e c o n d E d i t i o n 2 - 8

USING SUBROUTINES

X / *
X / * * * * * * *
X / * K$READ 1/ / *
X / * K$WRIT 2 , / *
X K$RDWR 3, / *
X K$CLOS 4, / *
X K$DELE 5, / *
X K$EXST 6, / *
X K$BKUP 7, / *
X K$VMR 20, / *
X K$BKIO 20000, / *
X K$GETU 40000, / *
X K$RESV 100000 , / *

SRCH$$ *********************
ACTION ******
OPEN FOR READ
OPEN FOR WRITE
OPEN FOR READING AND WRITING
CLOSE FILE UNIT
DELETE FILE
CHECK FILE'S EXISTENCE
OPEN FOR READ BY BACKUP UTILITY
OPEN FOR VMFA READING
OPEN FOR BLOCK MODE I/O
SYSTEM RETURNS UNIT NUMBER
reserved

* /
* /
* /
* /
* /
* /
* /
* /
* /
* /
* /
* /
* /

Excerpt from SYSCOM>KEYS.INS.FTN
Figure 2-1

2-9 Second Edition

Calling Subroutines
From BASIC/VM

CALL FORMAT

Before a program written in BASIC/VM can call a subroutine, the program
must declare the data types of the subroutine's parameters. To declare
the data types of a subrout ine's parameters in BASIC/VM, use a
statement of the following form:

SUB FORTRAN sub-name [(type, type...)]

In the SUB statement, only the FORTRAN-style data types INT, INT*4,
REAL, or REAL*8 can be declared. BASIC/VM supports only two types of
o p e r a n d , s t r i n g s a n d d o u b l e - p r e c i s i o n (6 4 - b i t) fl o a t i n g p o i n t .
However, the BASIC/VM compiler performs all conversions of BASIC/VM
operands to and from the subroutine argument types.

Note

A BASIC/VM program can call only those subroutines that expect
parameters of data types equivalent to INTEGER, INTEGER*2,
LOGICAL, INT*4, REAL, or REAL*8. The SUB FORTRAN statement
uses t he t ype spec i fie r INT t o co r respond t o INTEGER,
INTEGER*2, or LOGICAL.

3 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

To call a subroutine from a program written in BASIC/VM, use the
following statement.

CALL sub-name [(argument1, argument2 ...)]

Literals can be used as arguments in BASIC/VM subroutine calls.

External functions cannot be called as functions from BASIC/VM.
However, you can call most functions in this manual as subroutines,
using the CALL statement described above.

For more information about BASIC/VM, see the BASIC/VM Programmer's
Guide.

USING NUMERIC EQUIVALENTS OF SYSCOM KEYS

BASIC/VM does not recognize the key codes, argument codes, and error
codes defined by files in the SYSCOM directory. In calls to
subroutines, BASIC/VM programs must specify the numeric equivalents of
these keys and codes. To learn the numeric equivalent of a SYSCOM key
or code, list the SYSCOM file that defines the key or code. Chapter 2
of this volume explains which SYSCOM files define the key codes,
argument codes, and error codes for each calling language.

SYSTEM SUBROUTINES NOT RECOGNIZED BY BASIC/VM

Some of the FORTRAN subroutines in VAPPLB are not recognized by the
BASIC/VM compiler, and, therefore, cannot be called by BASIC/VM
commands. If a program that calls a subroutine in VAPPLB compiles
correctly but gives the runtime error message:

Entry name xxx not found

the subroutine is missing from the BASIC/VM compiler and must be
installed. Your System Administrator may install more subroutines from
VAPPLB (or user-written subroutines) in the BASIC/VM compiler, as
explained in the System Administrator's Guide or the BASIC/VM
Programmer's Guide.

DATA TYPES

Table 3-1 illustrates ways that FORTRAN and PL/I data types can be
represented in a SUB FORTRAN declaration in BASIC/VM. The BASIC/VM
numeric data type is REAL*8. When BASIC/VM interprets the CALL

S e c o n d E d i t i o n 3 - 2

CALLING SUBROUTINES FROM BASIC/VM

statement, it converts all scalars and arrays to INT or REAL.

For information about each data type, see the chapter titled "Overview
of Subroutines" in Volume II, III, or IV of this guide. The sections
that follow the table illustrate how arguments expected by subroutines
coded in FORTRAN or PL/I can be declared in BASIC/VM programs.

Table 3-1
Data Type Equivalents BASIC/VM

Generic Unit Declared in
SUB FORTRAN
statement

P L / I FTN F77

16 bits INT FIXED BIN INTEGER
(Halfword) FIXED INTEGER*2 INTEGER*2

BIN(15) LOGICAL LOGICAL*2

32 bits INT*4 FIXED INTEGER
(Word) BIN(31) INTEGER*4 INTEGER*4

LOGICAL
LOGICAL*4

Va r y i n g INT CHAR(n)
c h a r a c t e r VARYING
s t r i n g

32 bits REAL FLOAT REAL REAL
(Float s ingle BINARY REAL*4 REAL*4
p r e c i s i o n) FLOAT

BIN(23)

64 bits REAL*8 FLOAT REAL*8 REAL*8
(Float double BIN(47)
p r e c i s i o n)

Byte s t r ing INT CHAR(n) I n t e g e r CHARACTER
(Max. 32767) A r r a y *n

Note

String arrays in BASIC/VM cannot be passed as arguments to
FORTRAN subroutines.

3-3 Second Edition

SUBROUTINES, VOLUME I

BASIC/VM SUB Statement: INT
FTN and F77: INTEGER*2
PL/I: FIXED BIN(15) or FIXED BIN

Use the data type INT in the BASIC/VM SUB FORTRAN statement to declare
the FTN and F77 data type INTEGER*2 and the PL/I data type FIXED
BIN(15) or FIXED BIN. In BASIC/VM, the variable or constant to be
passed is the normal numer ic operand, wh ich is doub le-prec is ion
floating point, and is not declared.

For example, a BASIC/VM program that calls subroutine SRCH$$ must
d e c l a r e d a t a t y p e s t h a t c o r r e s p o n d t o t h e d a t a t y p e s i n t h e
subroutine's DCL statement, as follows:

DCL SRCH$$ ENTRY (FIXED BIN, CHAR (32) VAR, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN);

The following BASIC/VM statement declares each of the parameters of
SRCH$$ as INT, which corresponds to the data types declared in the DCL
statement above.

40 SUB FORTRAN SRCH$$(INT, INT, INT, INT, INT, INT)

The following BASIC/VM statements assign values to the variables that
are to be used as arguments of SRCH$$.

50 N = 6
60 F$ = 'CTRLFL
70 L = 6
80 F = 1
90 T = 0

The argument N illustrates how BASIC/VM calling programs use numeric
arguments in place of SYSCOM keys. The value assigned to N is 6, the
sum of the key K$EXST (=6), which instructs SRCH$$ to verify the
existence of a file, and K$IUFD (=0), which instructs SRCH$$ to look
for the file in the directory to which the user is currently attached.
The argument F$ is assigned the name of the file for which SRCH$$ is to
search ('CTRFL'). The values assigned to L, F, and T do not correspond
to SYSCOM keys or codes.

The following BASIC/VM statement calls
arguments defined above.

subroutine SRCH$$ with the

100 CALL SRCH$$(N,F$,L,F,T,C)

Second Edition 3-4

CALLING SUBROUTINES FROM BASIC/VM

The variable C in the CALL statement above receives the standard error
code reported by SRCH$$.

BASIC/VM SUB Statement: INT
FTN: LOGICAL
F77: LOGICAL*2

Use the data type INT in the BASIC/VM SUB FORTRAN statement to declare
parameters of the data types LOGICAL or LOGICAL*2. In the BASIC/VM
program, variables or constants to be passed to the subroutine should
be used as normal numeric operands (not explicit ly declared). They
have a value of 0 (false) or 1 (true).

For example, subroutine TEXTO$ expects as parameters an integer array,
two INTEGER*2 variables, and a LOGICAL variable. A BASIC/VM program
that calls TEXTO$ must declare data types that correspond to the types
expected by TEXTO$. Statement 50 below declares TEXTO$ as a BASIC/VM
routine with four parameters of the data type INT.

50 SUB FORTRAN TEXTO$(INT, INT, INT, INT]

The following statements cause values to be assigned to the arguments
N$ and Ll.

60 N$ = '
70 PRINT
80 INPUT "ENTER NAME OF FILE TO BE CREATED: ", N$
90 PRINT
100 Ll = LEN(N$)

The following statement calls subroutine TEXTO$

110 CALL TEXTO$(N$, Ll, L2, T)

The following statements specify conditional logic based on the value
of T, the LOGICAL argument which TEXTO$ sets to 0 or to 1.

120 IF T <> 0 GOTO 210
130 REM
140 REM LOGICAL T IS FALSE
150 REM
160 PRINT "INVALID NAME - TRY AGAIN"
17 0 GOTO 80
180 REM
190 REM LOGICAL T IS TRUE

3 - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

200 REM
210 IF T = 1 GOTO 240
220 PRINT "ERROR: TRY AGAIN"
230 GOTO 80
240 PRINT "LENGTH IS", L2
250 PRINT "TRUTH VALUE IS", T
2 60 PRINT "END OF RUN"

BASIC/VM SUB Statement: INT
PL/I: CHARACTER(n)NONVARYING

BASIC/VM can pass a character string to a subroutine or function
expecting a parameter of the type CHARACTER(n)NONVARYING, usually
declared CHARACTER(n). Declare the string INT in the BASIC/VM SUB
FORTRAN statement. The BASIC/VM program must pass the number of
characters expected by the subroutine.

For example, a BASIC/VM program that calls subroutine SPAS$$ must
declare data types that correspond to the data types in the following
DCL statement:

DCL SPAS$$ ENTRY (CHAR(6), CHAR(6), FIXED BIN);

The following BASIC/VM statement declares each of the parameters of
SPAS$$ as INT, which corresponds to the data types declared in the DCL
statement above.

20 SUB FORTRAN SPAS$$ (INT, INT, INT)

The following BASIC/VM statements assign values to the variables that
are to be used as arguments of SPAS$$. Note that each of the strings
to be passed to SPAS$$ consists of six characters, the number of
characters expected by SPAS$$.

30 0 = 'OWNSPW'
40 N = 'NOWNPN'

The following statement calls SPAS$$ with the arguments defined above

50 CALL SPAS$$ (0,N,C)

In the CALL statement above, the variable C is the FIXED BIN parameter
and receives the error code returned by the subroutine.

S e c o n d E d i t i o n 3 - 6

CALLING SUBROUTINES FROM BASIC/VM

BASIC/VM SUB Statement: INT*4
FTN: INTEGER*4
F77: INTEGER*4 or LOGICAL*4
PL/I: FIXED BIN(31)

Use the data type INT*4 in the BASIC/VM SUB FORTRAN statement to
declare parameters of the FTN data type INTEGER*4, the F77 data types
INTEGER*4 and LOGICAL*4, and the PL/I data type FIXED BIN(31). In
BASIC/VM, the variable or constant to be passed is the normal numeric
operand, which is double-precision floating point, and is not declared.

For example, when invoked by a CALL statement, the subroutine RNUM$A
expects a parameter of any data type, followed by two INTEGER*2
parameters and an INTEGER*4 parameter. The following BASIC/VM
statement declares data types for the parameters of RNUM$A.

50 SUB FORTRAN RNUM$A(INT, INT, INT, INT*4)

The following statements assign values to variables that are to be used
as arguments of RNUM$A.

20 F$ = 'ENTER A NUMBER'
30 L = 14
40 N = 1

The following statement calls function RNUM$A, using arguments defined
in the statements given above.

60 CALL RNUM$A(F$,L,N,V)

In the CALL statement above, V is the INTEGER*4 parameter and receives
the returned value of the subroutine.

BASIC/VM SUB Statement: INT or INT*4
FTN: Integer Arrays

An FTN integer array should be declared in the BASIC/VM SUB FORTRAN
statement as INT or INT*4, depending on the subroutine. Integer arrays
in FTN can contain either numbers or characters. In the BASIC/VM CALL
statement, the array should be called either as the array x(y), where x
is the variable name and _r ^s the dimension, or as the string x$ with
the proper number of characters.

For example, the subroutine TIMDAT returns the date, the time, and
other system information. A BASIC/VM program must call TIMDAT twice to
collect all this information, because BASIC/VM cannot store both

3 - 7 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

characters and integers in a single structure. Thus, BASIC/VM must
call TIMDAT once to collect the integers in an array, and again to
col lect the characters in a str ing. The fol lowing data structure is
the PL/I equivalent of the array that BASIC/VM must use to collect
integers from TIMDAT:

1/
CHAR(6),

2,r

3 FIXED BIN,
3 FIXED BIN,
3 FIXED BIN,

2,r
3 FIXED BIN,
3 FIXED BIN,

2,r
3 FIXED BIN,
3 FIXED BIN,

2 FIXED BIN,
2 FIXED BIN,
2 CHAR(32);

A BASIC/VM program which calls TIMDAT must declare data types that
correspond to an array and to FIXED BIN. The final FIXED BIN parameter
of TIMDAT must be declared INT in the BASIC/VM SUB FORTRAN statement;
28 is the usual value assigned this parameter.

The fo l lowing statement declares subrout ine TIMDAT as
subroutine with two parameters, each of the data type INT.

FORTRAN

10 SUB FORTRAN TIMDAT (INT, INT)

Statement 20 below allocates an array, A, with 15 elements.
30 calls subroutine TIMDAT to read information into array A.

Statement

15 REM COLLECT INTEGER DATA
20 DIM A(15)
30 CALL TIMDAT(A(), 28)

Sta tement 40 be low wr i tes 30 space charac te rs in to s t r ing A$
Statement 50 calls subroutine TIMDAT to read information into A$.

35 REM COLLECT CHARACTER DATA
40 A$ = SPA(30)
50 CALL TIMDAT(A$,28)

Second Edition 3-1

CALLING SUBROUTINES FROM BASIC/VM

The following statements display the numeric and alphabetic information
read into array A and string A$ by the two calls to TIMDAT.

60 PRINT 'MONTH: ':LEFT(A$,2)
70 PRINT 'DAY: ' :MID(A$,3, 2)
80 PRINT 'YEAR: ':MID(A$,5,2)
90 PRINT 'TIME IN MINUTES SINCE MIDNIGHT
100 PRINT 'TIME IN SECONDS: ':A(4)
110 PRINT 'TIME IN TICKS: ' :A(5)
120 PRINT 'LOGIN NAME: ':RIGHT(A$, 25)

:A(3)

Caut ion

Multidimensional arrays cannot be passed to FORTRAN from other
languages, because FORTRAN is the only language to use a
column-row format.

r BASIC/VM SUB Statement: REAL
FTN and F77: REAL or REAL*4
PL/I: FLOAT BIN or FLOAT BIN(23)

Use the data type REAL in the BASIC/VM SUB FORTRAN statement to declare
parameters of the FTN and F77 data type REAL or REAL*4, and of the PL/I
data type FLOAT BIN(23), also known as FLOAT BIN. In BASIC/VM, the
variable or constant to be passed should be used as the normal numeric
operand, which is double-precision floating point, and is not declared.

BASIC/VM SUB Statement: REAL*8
FTN and F77: REAL*8
PL/I: FLOAT BIN(47)

Use the data type REAL*8 in the BASIC/VM SUB FORTRAN statement to
declare parameters of the FTN and F77 data type REAL*8 and of the PL/I
data type FLOAT BIN(47), also called FLOAT BIN. In BASIC/VM, the
variable or constant to be passed should be the normal numeric operand,
which is double-precision floating point, and is not declared.

BASIC/VM SUB Statement: INT
FTN and F77: INTEGER*2
PL/I: BIT(l) ALIGNED

The PL/I data type BIT(l) ALIGNED can be treated the same as the
INTEGER*2 data type, whose value is -1 if false. Declare parameters of
this type INT in the BASIC/VM SUB FORTRAN statement. Note that the
PL/I data type BIT(l) cannot be passed from a BASIC/VM program.

3-9 Second Edition

Calling Subroutines From C

CALL FORMAT

To call a subroutine from a program written in C, use a statement of
the following form:

sub-name ([argumentl, argument2,... ,argumentn]);

In this statement, sub-name is the name of the subroutine, and the
arguments in brackets are the arguments that the C program is to pass
to the subroutine. The arguments must be separated by commas and the
list of arguments must be delimited by parentheses. The data type of
each argument must be declared in the C program that calls the
subroutine.

To call a function from a program written in C, you can use a variety
of statements. For example, you can use the same type of statement
that you use to call a subroutine. You can also use a statement that
assigns the value of the function to a variable, such as:

value = function(argument);

In the statement above, the variable value receives the value of the
subrout ine.

4 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

The C program that calls a function must declare the data type of the
function, as well as the data types of the function's arguments and of
the variable that receives the function's value. The data type of the
function is the data type of the value that it returns. For example,
if function foo returns a double value, the function itself must be
declared double, such as:

double foo();

If variable value is to receive the value of foo, then value must also
be declared double, such as:

double value;

If the data type of the variable that receives the function's value is
not declared, the C compiler assumes that the data type is int.

For more information about how to call subroutines and functions from
C, see the C User's Guide.

The FORTRAN Storage Class

Any non-C subroutine called by a program written in C should be
declared as the FORTRAN storage class. If the subroutine is not
declared as the FORTRAN storage class, the C language by default
converts the CHAR and SHORT INT data types to INT, and the FLOAT data
type to DOUBLE. Declaring the subroutine as the FORTRAN storage class
prevents C from performing this conversion. All the examples in this
chapter use the FORTRAN storage class for PRIMOS subroutines.

See the C User's Guide for information about accessing common blocks,
creating common blocks from C, transferring arguments in C, and passing
arrays by reference.

USING THE -OLDFORTRAN AND -NEWFORTRAN OPTIONS

When you compile programs in 64V mode and do not declare subroutines as
the FORTRAN storage class, you can use the compiler keywords
-OLDFORTRAN and -NEWFORTRAN to tell the C compiler which language
interface to use. The -OLDFORTRAN option selects the old interface,
and the -NEWFORTRAN option selects the new interface. The 32IX-mode C
compiler supports only the new interface.

If you specify neither the -OLDFORTRAN nor -NEWFORTRAN option on the
command line, the new interface is selected by default. If the source
code is not written for the new interface, you must either change the

S e c o n d E d i t i o n 4 - 2

CALLING SUBROUTINES FROM C

source code to adopt the new interface conventions, or specify
-OLDFORTRAN on the command line when you invoke the compiler. The new
interface conventions are documented in Prime's C User's Guide.

It is good practice to use the -NEWFORTRAN interface, which is faster
and more flexible than the -OLDFORTRAN interface.

Note

When the old interface is used, the ampersand character (&)
must be placed in front of variables in calls to non-C
subroutines to cause the variables to be passed by reference.

USING THE -NOCONVERT OPTION

If a C subroutine is being called from another Prime-supported language
such as FORTRAN or PL/I, the conversion of CHAR, SHORT, and FLOAT data
types does not occur. The C compiler, however, is not aware of this.
Therefore, the -NOCONVERT compiler option must be used to inform the C
compiler that data types of CHAR, SHORT, and FLOAT should not be
converted. For more information about data type conversion and the
-NOCONVERT option, see the C User's Guide.

USING SYSCOM FILES

To enable a program written in C to use standard error codes, insert
the file SYSCOM>ERRD.INS.CC into the program by including the following
statement in the program:

finclude <errd.ins.cc>

To enable a program written in C to use key codes, insert the file
SYSCOM>KEYS.INS.CC into the program by including the following
statement in the program:

tinclude <keys.ins.cc>

Subroutines in VAPPLB use argument codes in the form __$______• These
codes are associated with numbers in the file SYSCOM>A$KEYS.INS.CC. To
enable a program written in C to use argument codes, include the
following statement in the program:

#include <a$keys.ins.cc>

4 - 3 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

The BIND subcommand LI VAPPLB must be issued at load time

DATA TYPES

Table 4-1 suggests ways that FORTRAN and PL/1 data types can be
represented in C. For information about each data type, see the
chapter titled "Overview of Subroutines" in Volume II, III, or IV of
this guide.

Table 4-1
Data Type Equivalents

Generic Unit PL/ I FTN F77

16 bits short FIXED BIN INTEGER
(Halfword) FIXED INTEGER*2 INTEGER*2

BIN(15) LOGICAL LOGICAL*2

32 bits long FIXED INTEGER
(Word) i n t BIN(31) INTEGER*4 INTEGER*4

LOGICAL
LOGICAL*4

32 bits fl o a t FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precis ion) FLOAT

BIN(23)

64 bits double FLOAT REAL*8 REAL*8
(Float double BIN(47)
precis ion)

1 bit short BIT
BIT(l)

1 left- short BIT(l)
aligned bit ALIGNED
(Halfword)

Second Edition 4-4

CALLING SUBROUTINES FROM C

Table 4-1 (continued)
Data Type Equivalents: C

Generic Unit P L / I FTN F77

B i t s t r i ng unsigned
i n t

BIT(n)

16 bits char LOGICAL LOGICAL
(Halfword) LOGICAL*1 LOGICAL*1

Byte s t r ing c h a r [n] CHAR(n) I n t e g e r CHARACTER
(Max. 32767) A r r a y * n

Record s t r u c t CHAR(*)
VARYING

32 bits p o i n t e r p o i n t e r
(Two (32IX mode) OPTIONS
ha l fwo rds) (SHORT)

48 bits p o i n t e r p o i n t e r
(Three (64V mode)
ha l fwo rds)

L i t e r a l l i t e r a l ASCII ASCII ASCII
s t r ing or s t r ing or c h a r a c t e r c h a r a c t e r c h a r a c t e r
c h a r a c t e r c h a r a c t e r s t r i n g s t r i n g s t r i n g
a r r a y a r r a y

Note

There are no equivalents in FTN or PL/I to the enumeration
C data type or to the void C data type.

The following sections suggest how FORTRAN and PL/I data types can be
represented in C.

4-5 Second Edition

SUBROUTINES, VOLUME I

C: short int
FTN: INTEGER*2 or LOGICAL
F77: INTEGER*2 or LOGICAL*2
PL/I: FIXED BIN(15) or FIXED BIN

The C data type short int, also known as short, can be used as an
equivalent of the FTN data types INTEGER*2 and LOGICAL, of the F77 data
types INTEGER*2 and L0GICAL*2, and of the PL/I data type FIXED BIN
(15), also known as FIXED BIN.

For example, a C program that calls subroutine SRCH$$ must declare data
types that correspond to the data types in the DCL statement:

DCL SRCH$$ ENTRY (FIXED BIN, CHAR (32) VAR, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN)

The following C statement declares five variables as the data type
s h o r t .

short key, name_len, funit, type, code;

The following C statement declares that the subroutine SRCH$$ is of the
FORTRAN storage class.

fo r t ran s rch$$() ;

The following C statements assign values to four variables which are to
be used as arguments of SRCH$$.

key = k$exst + k$iufd;
name_len = 6;
funit = 0;
type = 0;

The following C statement calls subroutine SRCH$$, using arguments
defined in the program code above.

srch$$ (key, "ctr lfl", name_len, funit, type, code);

S e c o n d E d i t i o n 4 - 6

CALLING SUBROUTINES FROM C

C: long int
FTN: INTEGER*4
F77: INTEGER*4 or L0GICAL*4
PL/I: FIXED BIN(31)

The C data type long int, also known as long or int, can be used as an
equivalent of the FTN and F77 data type INTEGER*4, of the F77 data type
L0GICAL*4, and of the PL/I data type FIXED BIN(31).

For example, the function RNUM$A expects four parameters; the first
parameter can be any data type, and the remaining three must be
INTEGER*2, INTEGER*2, and INTEGER*4. C programs which call the
function RNUM$A must declare data types that correspond to those
expected by the function.

The following C statements declare data types for variables that are to
be used as arguments of RNUM$A. The variable value is declared as int,
which corresponds to INTEGER*4.

static char msg[21] = "Please enter a number";
short msglen, a$dec;
int value;

The following C statement declares that the subroutine RNUM$A is of the
FORTRAN storage class.

for t ran rnum$a() ;

The following C statements assign values to two of the variables that
are to be used in the call to RNUM$A.

msglen = 21;
a$dec = 1;

The following C statement calls subroutine RNUM$A,

rnum$a (msg, msglen, a$dec, value);

C: l i teral str ing or character array
FTN, F77, and PL/I: ASCII Character Strings

A C program should pass a literal string or character array to
a FORTRAN or PL/I subroutine that expects an ASCII character string

4 - 7 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

The example in the preceding section shows how the subroutine RNUM$A
can be called with an argument msg, which is defined as a string of
21 characters. The argument msg is declared in the example by the
fo l lowing s ta tement .

static char msg[21] = "Please enter a number";

C : floa t
FTN and F77: REAL*4
PL/I: FLOAT BIN(23)

The C data type FLOAT can be used as an equivalent of the FTN and F77
data type REAL*4 and of the PL/I data type FLOAT BIN(23).

For example, a C program that calls function RAND$A must declare data
types that correspond to INTEGER*4 and REAL*4, the data types of the
parameters of RAND$A. The REAL*4 parameter of RAND$A can also be
declared REAL*8.

The following C statements declare three variables, seed and number,
that are to be used when RAND$A is called. The variable number is
declared as FLOAT, which corresponds to REAL*4.

int seed;
float number;
short k;

The following C statement declares function RAND$A as the FORTRAN
storage class and its value as the data type FLOAT.

for t ran float rand$a() ;

The following C statements call function RAND$A to produce ten numbers
at random and to print the numbers.

seed = 1;
for (k=l; k<=10; k++)

{

}

number = rand$a (seed);
printf ("%e\n", number);

S e c o n d E d i t i o n 4 - i

CALLING SUBROUTINES FROM C

C: double
FTN and F77: REAL*8
PL/I; FLOAT BIN(47)

The REAL*8 data type expected by FORTRAN subroutines is the FLOAT
BIN(47) data type in PL/I. These two data types can be declared as
double in C.

For example, the return value of function RAND$A (See the example in
the preceding section.) can be received in a REAL*8 variable declared
double in C. Such a variable, called number, can be declared as
fo l lows:

double number;

If the return value of the function is received in a variable declared
double, the function itself must be declared double, as follows:

fortran double rand$a();

C: short
PL/I: BIT, BIT(l), or BIT(l) ALIGNED

The PL/I data type BIT or BIT(l) represents a logical (Boolean) value;
a bit value of 1 means TRUE and a value of 0 means FALSE. This data
type can be declared short in C.

The PL/I data type BIT(l) ALIGNED specifies a bit-aligned halfword (16
bits). This type can also be declared short in C.

The C programmer must know which of the 16 bits in the short data value
is set by the function that returns the short value.

C: unsigned int
PL/I: BIT(n)

The PL/I data type BIT(n) specifies a bit string of length n. This
data type can be declared in C as unsigned int, which specifies a bit
string as represented by a machine word of 32 bits. There is no
control of the length of a bit string in C except by use of existing
data types.

4 - 9 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

C: char
FTN and F77: LOGICAL or LOGICAL*!

The FTN and F77 data types LOGICAL and LOGICAL*l can be declared in C
as char, with only the low order bit of the character being used.

For example, the function DELE$A returns a value to a variable which
must be declared as LOGICAL or a corresponding data type. The
following statement declares the variable log, which receives the
return value of DELE$A, as type char, which corresponds to LOGICAL*l.
Note that a variable declared char in C can be evaluated
arithmetically. In this example, log, a char variable, is tested to
determine whether it is set to zero or to a nonzero value.

char log;

DELE$A expects two arguments of the data type INTEGER*2. The following
statements declare data types for these arguments and assign values to
them.

static char filename[7] = "ctrlfl";
short count = 6;

The first statement above declares an array, FILENAME, as type char,
and assigns the characters "ctrlfl" to the array; the data type of
this parameter of DELE$A does not matter. The second statement above
declares the variable count as type short, and assigns the value 6 to
the variable.

The following statement declares the function DELE$A as the FORTRAN
storage class.

fortran short dele$a();

The following statement calls DELE$A with the arguments declared above

log = dele$a (filename, count);

S e c o n d E d i t i o n 4 - 1 0

CALLING SUBROUTINES FROM C

The following "if...else" statement performs one of two substatements,
depending on whether the returned value of DELE$A (log) is zero or
nonzero.

if (log == 1)
printf ("file deleted successfully\n");

e lse
printf ("no go\n");

C: Array of Integers and Characters
FTN: Integer and Character Arrays
F77: CHARACTERS
PL/I: CHAR(n)

Arrays expected by FORTRAN and PL/1 subroutines should be declared as
an array of integers or as an array of characters in C, depending on
the type of array being passed. A FORTRAN integer array containing
both integer and character data can be declared in C as a structure of
elements each of which is separately declared as an integer or
character data type.

For example, a C program that calls subroutine TIMDAT, which returns
system and user information, can declare an array that contains both
integer and character data. The following C statement defines a data
type named arrayl; this data type is a structure consisting of eleven
fields, each of which is of the data type char or the data type short.
The char fields are to contain characters and the short fields are to
contain integers.

static struct arrayl
{
char mmddyy[6];
short time_min;
short time_sec;
short time_tck;
short cpu_sec;
short cpu_tck;
short disk_sec;
short disk_tck;
short tck_sec;
short user_num;
char username[31];

>;

4 - 1 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

The following C statement declares the variable intarray as of the data
type arrayl, as defined above.

static struct arrayl intarray;

The following statement declares the variable num as SHORT and assigns
it a value of 28. This value must be specified as the second argument
of TIMDAT.

short num = 28;

The following C statement declares TIMDAT as a FORTRAN subroutine

fortran timdat() ;

The following C statement calls TIMDAT with intarray and num
arguments.

as

timdat(intarray, num);

The following C statements print the information that TIMDAT has
returned to array intarray.

p r i n t f
p r i n t f
p r i n t f
p r i n t f
p r i n t f
p r i n t f
p r i n t f

"date is
"seconds elapsed
"ticks elapsed
"cpu seconds used
"cpu ticks
"disk seconds used
"user name

%.6s\n", intarray.mmddyy);
%d\n", intarray.time_sec);
%d\n", intarray.t ime_tck);
%d\n", intarray.cpu_sec);
%d\n", intarray.cpu_tck);
%d\n", intarray.disk_sec);
%.31s\n", intarray.username)

C: Two-element structure
PL/I: CHARACTER(*)VARYING

The PL/1 data type CHARACTER(*)VARYING is implemented as a record
structure, providing a count of the number of characters in the
st ructure fo l lowed by the characters themselves. F igure 4-1
illustrates a CHAR(*)VAR record structure.

Second Edition 4-12

CALLING SUBROUTINES FROM C

05

Count Character String

Figure 4-1
CHAR(*) VAR Record Structure

In C, the struct and typedef statements declare data types that are
equivalent to the CHAR(*)VAR data type. For more information about
these statements, see the C User's Guide.

Note

The PL/I type CHAR(n) VARYING represents a character string
whose length is given by the value n. This data type can be
treated the same as CHAR(*) VARYING.

For example, a C program that calls subroutine GV$GET must declare data
types that correspond to the data types in the subroutine's DCL
statement, as follows:

DCL GV$GET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN);

The following C statements declare data types for variables that are to
be used as arguments of GV$GET. The struct statement defines a data
type, charvar, that corresponds to CHAR(*)VAR; charvar consists of a
count-of-characters element, declared SHORT, and a five-character
string. The static struct statements declare the variables varname and
varval to be of the type charvar; varname is assigned the character
count 4 and the string value ".MAX".

short varsize, code;
struct charvar

{
short nchars;
char str ingl [5] ;
} ;

static struct charvar varname =
static struct charvar varvalue;

4, ,max"}

r
r

4-13 Second Edition

SUBROUTINES, VOLUME I

The following C statement declares GV$GET as of the FORTRAN storage
class.

fortran gv$get();

The following statement assigns the value 5 to the variable varsize.

varsize = 5;

The following statement calls subroutine GV$GET with the arguments
defined above.

gv$get (varname, varvalue, varsize, code);

C: pointer
PL/I: POINTER or POINTER OPTIONS (SHORT)

The C data type pointer can be used as an equivalent of the PL/I data
type POINTER, also known as PTR. A POINTER item is usually stored in
three halfwords (48 bits) . If the POINTER item points only to
halfword-aligned data, it may occupy two halfwords (32 bits). The item
to which the POINTER item points is declared with the BASED attribute
(for example, BASED FIXED BIN).

The POINTER OPTIONS (SHORT) data type is the same as POINTER except
that it always occupies only two halfwords and can point only to
halfword-aligned data.

Note

When used as a parameter, POINTER can be used interchangeably
with POINTER OPTIONS (SHORT).

C in 32IX mode accepts only halfword-aligned, two-halfword
pointers, and therefore requires the use of POINTER OPTIONS
(SHORT). When used as a returned function value, POINTER
OPTIONS (SHORT) cannot be used in C in 64V mode, which requires
returned pointers to be three halfwords; in this case, POINTER
must be used.

S e c o n d E d i t i o n 4 - 1 4

Calling Subroutines
From COBOL or CBL

CALL FORMAT

To call a subroutine from a program written in COBOL or CBL, use a CALL
statement of the following format:

CALL 'sub-name' [USING data-name-1 [, data-name-2]

In the CALL statement, 'sub-name' is the subroutine's name enclosed by
single quotation marks. The data-names should be defined in the DATA
division with level-number 01 or 77. In COBOL or CBL, arguments cannot
be passed to or returned from a subroutine as literals.

External functions cannot be called from COBOL or CBL. However, most
functions in this guide can be called as subroutines, using the CALL
statement described above.

CBL incorporates features not supported by COBOL. For information
about CBL, see the COBOL 7 4 Reference Guide.

5 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

USING NUMERIC EQUIVALENTS OF SYSCOM KEYS

COBOL and CBL do not recognize the key codes, argument codes, and error
codes defined by standard files in the SYSCOM directory. In calls to
subroutines, COBOL and CBL programs must specify the numeric
equivalents of these keys and codes. To learn the numeric equivalent
of a SYSCOM key or code, list the SYSCOM file that defines the key or
code. Chapter 2 of this volume explains which SYSCOM files define the
key codes, argument codes, and error codes for each calling language.

DATA TYPES

Table 5-1 suggests ways that
represented in COBOL or CBL.

FORTRAN and PL/I data types can be

Table 5-1
Data Type Equivalents: COBOL and CBL

Generic Unit CBL COBOL P L / I FTN F77

16 bits COMP COMP FIXED BIN INTEGER
(Halfword) PIC S9(l)- FIXED INTEGER*2 INTEGER*2

PIC S9(4) BIN(15) LOGICAL L0GICAL*2

32 bits COMP FIXED INTEGER
(Word) PIC S9(5)-

PIC S9(9)
BIN(31) INTEGER*4 INTEGER*4

LOGICAL
LOGICAL*4

32 bits COMP-1 FLOAT REAL REAL
(Float s ingle BINARY REAL*4 REAL*4
p r e c i s i o n) FLOAT

BIN(23)

64 bits COMP-2 FLOAT REAL*8 REAL*8
(Float double BIN(47)
p r e c i s i o n)

Byte str ing DISPLAY DISPLAY CHAR(n) I n t e g e r CHARACTER
(Max. 32767) PIC A(n)

PIC X(n)
FILLER

PIC A(n)
PIC X(n)
FILLER

A r r a y *n

Second Edition 5-2

CALLING SUBROUTINES FROM COBOL OR CBL

Table 5-1 (continued)
Data Type Equivalents: COBOL and CBL

Generic Unit CBL COBOL PL / I FTN F77

Byte string
(2 digits
per byte)

Record

COMP-3

two-
element
i tem

COMP-3

two-
element
item

FIXED
DECIMAL

CHAR(*)
VARYING

Note

COBOL has no data types that correspond to the INTEGER*4, FIXED
BIN(31), REAL*4, REAL*8, or POINTER data types. CBL has
data type that corresponds to POINTER.

no

The following paragraphs explain how arguments of these types must be
declared in COBOL programs that call subroutines. For more information
about each data type, see the chapter titled "Overview of Subroutines"
in Volume II, III, or IV of this guide.

CBL: COMP with PIC S9(l) to S9(4)
COBOL: COMP
PL/I: FIXED BIN or FIXED BIN(15)
FTN or F77: INTEGER*2

The COBOL data type COMP, signed or unsigned, can be used as an
equivalent of the FTN and F77 data type INTEGER*2 and of the PL/I data
type FIXED BIN, also called FIXED BIN(15).

The CBL data type COMP, with an item declared PIC S9(l) to PIC S9(4),
can be used as an equivalent of the data types INTEGER*2 and FIXED BIN.

For example, a COBOL or CBL program that calls subroutine TNOUA must
declare parameters of the proper COBOL or CBL data types for TNOUA.
Subroutine TNOUA has two parameters, with the data types CHAR(*) and
FIXED BIN, as indicated by the following DCL statement:

DCL TNOUA ENTRY (CHAR(*), FIXED BIN);

5-3 Second Edition

SUBROUTINES, VOLUME I

The following statements from the DATA DIVISION of a COBOL or CBL
program declare two variables, ERRBUFF and COUNTER, with data types
that correspond to CHAR(*) and FIXED BIN, respectively.

WORKING-STORAGE SECTION.
01 ERRBUFF
01 COUNTER

PIC X(l) VALUE 'A207' .
COMP PIC S9(4) VALUE 1

Note

You can omit the PIC S9(4) clause from declarations of the data
type COMP if you compile the program using the COBOL compiler.
However, the CBL compiler returns an OBSERVATION error message
if the PIC S9(4) clause is omitted from the COMP declarations.

The following statement from the PROCEDURE DIVISION of a COBOL or
program calls TNOUA, specifying ERRBUFF and COUNTER as arguments.

CBL

CALL 'TNOUA' USING ERRBUFF, COUNTER.

COBOL and CBL: COMP
FTN: LOGICAL
F77: LOGICAL*2

The COBOL and CBL data type COMP can be used as an equivalent of the
FTN data type LOGICAL and the F77 data type LOGICAL*2. Arguments of
this data type must have a value of 0 (false) or 1 (true).

For example, subroutine TEXTO$ has four parameters, of the data types
integer array, INTEGER*2, INTEGER*2, and LOGICAL. The fol lowing
statements from the DATA DIVISION of a COBOL or CBL program declare
four variables, FILENAME, NAMELENGTH, TRUELENGTH, and TEXTOK, with data
types that correspond to the parameters of TEXTO$. The variable TEXTOK
is declared as COMP PIC S9(4), which corresponds to the data type
LOGICAL.

DATA DIVISION.
WORKING-STORAGE SECTION
01 FILENAME
01 NAMELENGTH
01 TRUELENGTH
01 TEXTOK

PIC X(32).
COMP PIC S9(4) VALUE 32
COMP PIC S9(4).
COMP PIC S9(4).

Second Edition 5-4

CALLING SUBROUTINES FROM COBOL OR CBL

Note

You can omit the PIC S9(4) clause from the declaration of the
data type COMP if you compile the program using the COBOL
compiler. However, the CBL compiler returns an OBSERVATION
error message if the PIC S9(4) clause is omitted from the COMP
d e c l a r a t i o n s .

The following statement from the COBOL program's PROCEDURE DIVISION
calls subroutine TEXTO$.

CALL 'TEXTO$' USING FILENAME,NAMELENGTH,TRUELENGTH,TEXTOK,

CBL: COMP with PIC S9(5) through PIC S9(9)
FTN: INTEGER*4
F77: INTEGER*4 or L0GICAL*4
PL/I: FIXED BIN(31)

The CBL data type COMP, with PIC S9(5) through PIC S9(9), can be used
as an equivalent of the FTN data type INTEGER*4, of the F77 data types
INTEGER*4 and LOGICAL*4, and of the PL/I data type FIXED BIN(31).

For example, the function DATE$ returns the current date and time in
b inary fo rmat as a 32-b i t va lue . In the func t ion , th is va lue is
declared as data type FIXED BIN(31), as indicated by the following DCL
s ta tement :

DCL DATE$ ENTRY RETURNS (FIXED BIN(31));

The following statements from the DATA DIVISION of a CBL program
declare the variable FSDATE as COMP PIC S9(5), which corresponds to the
data type FIXED BIN(31):

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FSDATE COMP PIC S9(5)

The following statement from the PROCEDURE DIVISION of a CBL program
calls DATE$, assigning its value to the variable FSDATE.

CALL 'DATE$' USING FSDATE.

5 - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

CBL: COMP-1
PL/I: FLOAT BINARY(23) or FLOAT BINARY
FTN and F77: REAL or REAL*4

The CBL data type COMP-1 can be used as an equivalent of the PL/I data
type FLOAT BINARY(23) and of the FTN and F77 data type REAL*4, which
can be specified simply as REAL.

For example, the function DTIM$A outputs the disk time since login, in
centiseconds, to a variable that must be INTEGER*4; the function value
is disk time in seconds, and is returned to a variable that must be
REAL*4 or REAL*8. The following statements from the DATA DIVISION of a
COBOL or CBL program declare the output variable DSKTIM as COMP PIC
S9(5), corresponding to INTEGER*4, and the variable RTVAL as COMP-1,
corresponding to REAL*4.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DSKTIM COMP PIC S9 (5) .
01 RTVAL COMP-1.

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program calls function DTIM$A; the function returns its value to
RTVAL.

CALL 'DTIM$A' USING RTVAL.

CBL: COMP-2
PL/I: FLOAT BIN(47)
FTN and F77: REAL*8

The CBL data type COMP-2 can be used as an equivalent of the PL/I data
type FLOAT BIN(47) and of the FTN and F77 data type REAL*8.

For example, the function FDAT$A accepts information from RDEN$$ about
the date in the format YYYYYYYMMMMDDDD and converts it into the format
DAY, MON DD YEAR (for example, FRI, JAN 16 1987) . The returned value
of the function is the date in the format MM/DD/YY and must be received
in a REAL*8 variable. The following lines from a CBL program declares
the variable rtval as COMP-2, which corresponds to REAL*8.

DATA DIVISION.
WORKING-STORAGE SECTION,
01 RTVAL COMP-2.

S e c o n d E d i t i o n 5 - 6

CALLING SUBROUTINES FROM COBOL OR CBL

The following statement from the PROCEDURE DIVISION of a CBL program
calls function FDAT$A.

CALL 'FDAT$A' USING RTVAL,

COBOL and CBL: PIC 9(n), PIC X(n), or PIC A(n)
FTN: ASCII Character String

A COBOL or CBL program must declare an ASCII string as PIC 9(n), PIC
X(n), or PIC A(n) if it is to pass the string to a FORTRAN subroutine
or funct ion.

For example, a COBOL or CBL program that calls subroutine SRCH$$ must
pass to SRCH$$ six arguments, including a character string representing
a file name. The following DCL statement declares the data types
expected by SRCH$$.

DCL SRCH$$ ENTRY (FIXED BIN, CHAR(32) VAR, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

The following statements from such a program declare data types and
values for all of the arguments that are to be passed to SRCH$$. These
arguments include a variable, NAME, that is declared PIC X(6) and is
assigned the value 'CTRLFL', a file name.

DATA DIVISION.
WORKING-STORAGE SECTION
01 K-EXST
01 NAME
01 NAMELENGTH
01 FUNIT
01 TYPE
01 CODE

COMP PIC S9(4) VALUE 6.
PIC X(6) VALUE 'CTRLFL'
COMP PIC S9(4) VALUE 6.
COMP PIC S9(4) VALUE 0.
COMP PIC S9(4) VALUE 0.
COMP PIC S9(4).

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program calls subroutine SRCH$$ with the parameters defined by the DATA
DIVISION statements above.

CALL 'SRCH$$' USING K-EXST, NAME, NAMELENGTH, FUNIT, TYPE, CODE

5-7 Second Edition

SUBROUTINES, VOLUME I

Note

You can omit the PIC S9(4) clause from declarations of the data
type COMP if you compile the program using the COBOL compiler.
However, the CBL compiler returns an OBSERVATION error message
if the PIC S9(4) clause is omitted from the COMP declarations.

CBL: PIC A(n) or PIC X(n)
COBOL: PIC A(n), PIC X(n), or PIC 9(n)
PL/I: CHARACTER(n)NONVARYING

A COBOL or CBL program can declare as PIC A or PIC X items of n
characters any data strings that are to be passed to subroutines or
functions expecting data of the PL/I data type CHARACTER(n)NONVARYING,
also called CHAR(n).

For example, subroutine uses three parameters, as declared in the
following DCL statement:

DCL SPAS$$ ENTRY (CHAR(6), CHAR(6), FIXED BIN);

The following statements declare data types for three variables, OWNER,
NONOWN, and CODE, that are to be used as arguments in the call to
SPAS$$ from COBOL or CBL.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OWNER PIC X(6) .
01 NONOWN PIC X(6) .
01 CODE COMP PIC S9(l).

The following statement calls SPAS$$ with the arguments defined above.

CALL 'SPAS$$' USING OWNER, NONOWN, CODE.

COBOL or CBL: COMP-3
PL/I: FIXED DECIMAL

The COBOL and CBL data type COMP-3 can be used as an equivalent of the
PL/I data type FIXED DECIMAL. COMP-3 represents a packed decimal item.
The PICTURE clause of a COMP-3 data type declaration can contain only
9, S, V, or P. FIXED DECIMAL represents a data item consisting of one
or more decimal digits, and which may include a decimal point or sign.

S e c o n d E d i t i o n 5 - 8

CALLING SUBROUTINES FROM COBOL OR CBL

For more information about these data types, see the COBOL 7 4 Reference
Guide and the PL/I Reference Guide.

COBOL or CBL: Array
FTN: Integer Array

In COBOL or CBL, a table of the correct data type can be passed to a
FORTRAN subroutine expecting an integer array. An integer array in FTN
can contain either alphabetic or numeric information.

Multidimensional arrays cannot be passed to a FORTRAN subroutine.

For example, the subroutine TIMDAT returns an integer array containing
alphabetic and numeric information. A COBOL or CBL program that calls
TIMDAT must declare a separate array for each type of information. The
following statements from a COBOL or CBL program define separate arrays
for alphabetic and numeric characters.

DATA DIVISION.
WORKING-STORAGE SECTION
01 ARRAY.

05 TABLE PIC X(30).
05 CHAR-ARRAY REDEFINES TABLE OCCURS 15, PIC X(2).
05 NUM-ARRAY REDEFINES TABLE OCCURS 15, COMP PIC S9(4)

01 NUMBER COMP PIC S9(4) VALUE 15.

Note

You can omit the PIC S9(4) clause from declarations of the
data type COMP if you compile the program using the COBOL
compiler. However, the CBL compiler returns an OBSERVATION
error message if the PIC S9(4) clause is omitted from the
COMP declarations.

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program calls subroutine TIMDAT.

CALL 'TIMDAT' USING ARRAY, NUMBER.

In this CALL statement, ARRAY is the array of system and user
information returned by the subroutine, and NUMBER specifies the number
of elements in the array; this value must be less than or equal to 28.

The following DISPLAY statements from the PROCEDURE DIVISION display on
the te rm ina l t he i n fo rma t ion re tu rned by T IMDAT. Each D ISPLAY
statement refers to a field either of the alphabetic array or of the
numer ic a r ray. The fina l D ISPLAY s ta tement d isp lays the fi rs t 6

5 - 9 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

characters of the 32 character user name returned by TIMDAT

DISPLAY 'MONTH IS: ', CHAR-ARRAY(1).
DISPLAY 'DAY IS: ', CHAR-ARRAY(2).
DISPLAY 'YEAR IS: ', CHAR-ARRAY(3).
DISPLAY 'MINUTES SINCE MIDNIGHT: ', NUM-ARRAY(4).
DISPLAY 'TIME IN SECONDS: ', NUM-ARRAY(5).
DISPLAY 'TIME IN TICKS: ', NUM-ARRAY(6).
DISPLAY 'CPU TIME IN SECONDS: ', NUM-ARRAY(7).
DISPLAY 'CPU TIME IN TICKS: ', NUM-ARRAY(8).
DISPLAY 'DISK I/O TIME IN SECONDS: ', NUM-ARRAY(9).
DISPLAY 'DISK I/O TIME IN TICKS: ', NUM-ARRAY(10).
DISPLAY 'TICKS PER SECOND: ', NUM-ARRAY(11).
DISPLAY 'USER-NUMBER: ', NUM-ARRAY(12).
DISPLAY 'LOGIN NAME: ', CHAR-ARRAY(13), CHAR-ARRAY(14),

CHAR-ARRAY(15) .

COBOL and CBL: Two-element group item
PL/I: CHARACTER(*)VARYING

The PL/I data type CHARACTER(*)VARYING is a record structure consisting
of a count-of-characters field and a field containing characters. In
COBOL or CBL, a comparable record structure must be declared as a
t w o - e l e m e n t g r o u p i t e m . T h e fi r s t e l e m e n t s h o u l d b e t h e
count-of-characters field and should be defined as a COMP data type.
The second element should be the character field and should be defined
as PIC X(n), where n is equal to the length of the character field.
The following group item illustrates these requirements.

01 CHAR-VAR.
05 CHAR-COUNT PIC S9(4) VALUE 5 COMP.
05 CHAR-STRING PIC X(5) VALUE 'ABCDE'.

In the CHAR-COUNT field above, VALUE 5 specifies the number of
characters to be passed.

In the CHAR-STRING field above, PIC X(5) specifies that there are five
characters in the character string; the characters themselves, A, B,
C, D, and E, are specified after VALUE'.

For example, the subroutine COM$AB, which expands a line of text using
the PRIMOS abbreviation preprocessor, uses one CHAR(*) VAR and two
FIXED BIN parameters, as indicated by the following DCL statement:

DCL COM$AB ENTRY (CHAR(*) VAR, FIXED BIN, FIXED BIN);

Second Edition 5-10

CALLING SUBROUTINES FROM COBOL OR CBL

The following lines from the DATA DIVISION of a COBOL or CBL program
define data types for variables that can be used for each of these
parameters.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 COMMAND.

05 CLENGTH PIC S9(4) VALUE 6 COMP.
05 CFIELD PIC X(6).

01 COMSIZE PIC S9(4) VALUE 6 COMP.
01 CODE PIC S9(4) COMP.

The following statement moves the characters "sl" to cfield,

MOVE 'SL' TO CFIELD

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program illustrates a call to subroutine COM$AB.

CALL 'COM$AB' USING COMMAND, COMSIZE, CODE

5 - 1 1 S e c o n d E d i t i o n

Calling Subroutines
From FORTRAN

CALL FORMAT

A subroutine can be called from a program written in FORTRAN 66 (FTN)
or FORTRAN 77 (F77) by a statement of the following form:

CALL sub-name[(argument [, argument]...)]

In the CALL statement, sub-name is the name of the subroutine and
argument can be either a literal or a data-name.

FTN and F77 can invoke functions in a variety of ways. For information
about how FORTRAN calls subroutines and functions, see the FORTRAN
Reference Guide or the FORTRAN 77 Reference Guide.

USING SYSCOM FILES

You can insert the SYSCOM file that defines error codes into a FORTRAN
program by including the following statement in the program:

$INSERT SYSCOM>ERRD.INS.FTN;

6 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

You can insert the SYSCOM file that defines key codes into a FORTRAN
program by including the following statement in the program:

$INSERT SYSCOM>KEYS.INS.FTN;

You can insert the SYSCOM file that defines argument codes into a
FORTRAN program by the following statement in the program:

$INSERT SYSCOM>A$KEYS.INS.FTN;

In F77, use the INCLUDE statement to insert SYSCOM files into a
program. The file name specified as the argument of the INCLUDE
statement must be enclosed by single quotation marks. For example, the
following statement inserts into a program the SYSCOM file that defines
argument codes.

INCLUDE 'SYSCOM>A$KEYS.INS.FTN'

For more information about the INCLUDE statement, see the Rev. 21
update of the FORTRAN 77 Reference Guide.

DATA TYPES

Table 6-1 suggests ways that FORTRAN and PL/1 data types can be
represented in FTN and F77.

S e c o n d E d i t i o n 6 - 2

CALLING SUBROUTINES FROM FORTRAN

Table 6-1
Data Type Equivalents: FORTRAN

Generic Unit FTN F77 P L / I

16 bits INTEGER FIXED BIN
(Halfword) INTEGER*2 INTEGER*2 FIXED

LOGICAL L0GICAL*2 BIN(15)
B I T (l)

ALIGNED

32 bits INTEGER*4 INTEGER FIXED
(Word) INTEGER*4

LOGICAL
LOGICAL*4

BIN(31)

32 bits REAL REAL FLOAT
(Float s ingle REAL*4 REAL*4 BINARY
p r e c i s i o n) FLOAT

BIN(23)

64 bits REAL*8 REAL*8 FLOAT
(Float double doub le doub le BIN(47)
p r e c i s i o n) p r e c i s i o n p r e c i s i o n

Byte s t r ing I n t e g e r CHAR*n CHAR(n)
(Max. 32767) A r r a y

Record Use Use CHAR(*)
S t r u c t u r e EQUIVALENCE EQUIVALENCE VARYING

Statement Statement

Note

Neither FTN nor F77 has data types that correspond to the PL/I
data types BIT, BIT(l) , BIT(n), CHAR(n) VARYING, POINTER
OPTIONS (SHORT), or POINTERS.

The following sections suggest how PL/I data types can be declared in
FTN or F77. For more information about each data type, see the chapter
t i t led "Overv iew of Subrout ines" in Volume I I , I I I , or IV of th is
gu ide .

6-3 Second Edition

SUBROUTINES, VOLUME I

FTN or F77: INTEGER*2 or INTEGER*4
PL/I: FIXED BIN(15) or FIXED BIN(31)

The FTN and F77 data types INTEGER*2 and INTEGER*4 can be used as
equivalents of the PL/I data types FIXED BIN(15) and FIXED BIN(31),
r e s p e c t i v e l y.

By default, FTN treats as INTEGER*2 any data type declared simply as
INTEGER. To make FTN treat the INTEGER data type as INTEGER*4, use the
-INTL (integer long) option every time you compile an FTN program. For
example, to compile program LOGICAL.FTN so that INTEGER is interpreted
as INTEGER*4, execute the following command.

OK, FTN LOGICAL.FTN -INTL

By default, F77 treats as INTEGER*4 any data type declared simply as
INTEGER. To make F77 treat the INTEGER data type as INTEGER*2, use the
-INTS (short integer) option every time you compile an F77 program.
For example, to compile program LOGICAL.F77 so that INTEGER is
interpreted as INTEGER*2, execute the following command.

OK, F77 LOGICAL.F77 -INTS

Although the data type INTEGER is valid in FTN and F77, it is good
pract ice to declare al l integer arguments as ei ther INTEGER*2 or
INTEGER*4.

For example, a program written in FTN or F77 that calls the subroutine
TI$MSG must declare data types that correspond to the data types
declared for the subroutine in the following DCL statement:

DCL TI$MSG ENTRY (FIXED BIN(15), FIXED BIN(31), FIXED BIN(31),
FIXED BIN(31));

The fo l l ow ing s ta tements f rom an FTN o r F77 p rogram dec la re
corresponding data types for the four parameters of TI$MSG:

INTEGER*2 RESERV
INTEGER*4 CONNECT, CPU, 10

~ >

S e c o n d E d i t i o n 6 - 4

CALLING SUBROUTINES FROM FORTRAN

The following statement from an FTN or F77 program calls TI$MSG with
the four arguments whose data types are declared above.

CALL TI$MSG (RESERV, CONNECT, CPU, IO);

FTN: LOGICAL
F77: L0GICAL*2
PL/I: FIXED BIN or FIXED BIN(15)

The FTN data type LOGICAL and the F77 data type LOGICAL*2 can be used
as equivalents of the PL/I data type FIXED BIN and FIXED BIN(15).

For example, the subroutine BREAK$ expects a parameter of the data type
FIXED BIN, as indicated by the following DCL statement:

DCL BREAK$ ENTRY (FIXED BIN);

Any variable that is to be used in the call to BREAK$ must be declared
LOGICAL*2, the F77 equivalent of FIXED BIN. For example, the following
statement from a program written in F77 declares the variable logic as
L0GICAL*2.

L0GICAL*2 LOGIC

The program then calls subroutine BREAK$

CALL BREAK$ (LOGIC)

FTN and F77: INTEGER*2
PL/I: BIT(l) ALIGNED

The FTN and F77 data type INTEGER*2 can be used as an equivalent of the
PL/I data type BIT(l) ALIGNED. If the argument is declared in the PL/I
program as BIT(l) ALIGNED, it can be treated as a 16-bit integer, with
a value of 0 for false and -32768 for TRUE.

For example, an FTN or F77 program that calls function IDCHK$ must
declare data types for the parameters of IDCHK$ that correspond to the
f o l l o w i n g :

DCL IDCHK$ ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT (1));

6 - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Note that BIT(l) values returned by functions are always ALIGNED.

The following statement from an FTN or F77 program declares variable
return as INTEGER*2; return could thus be used to receive the returned
value of IDCHK$.

INTEGER*2 return

FTN and F77: REAL or REAL*4
PL/I: FLOAT BIN or FLOAT BIN(23)

The FTN and F77 data type REAL, or REAL*4, can be used as an equivalent
of the PL/I data type FLOAT BIN, or FLOAT BIN(23).

FTN and F77: REAL*8
PL/I: FLOAT BIN(47)

The FTN and F77 data type REAL*8 can be used as an equivalent of the
PL/I data type FLOAT BIN(47).

FTN and F77: Two-element record, defined by EQUIVALENCE statement
PL/I: CHARACTER(*)VARYING

The PL/1 data type CHARACTER (*) VARYING is implemented as a record
structure, consisting of a count of characters followed by the
characters themselves. Figure 6-1 illustrates the record's structure.

05

Count Character String

Figure 6-1
CHAR(*) VAR Record Structure

In FTN and F77, the corresponding structure is a two-element record.
The record consists of an INTEGER*2 element containing a count of the
characters in the record and a field containing a character string.
This field can be CHARACTERS in F77, or INTEGER*2 in FTN, and should
contain the characters to be passed.

Second Edition 6-6

CALLING SUBROUTINES FROM FORTRAN

The EQUIVALENCE statement can be used to create such a record by
assigning values to the two elements of the array. For example, the
following FTN code sets up a two-element array that corresponds in
structure to the CHARACTER(*)VARYING data type of PL/I.

INTEGER*2 STRING(10), LENGTH
INTEGER*2 VARSTRING(11)
EQUIVALENCE (LENGTH, VARSTRING(1))

(STRING(1), VARSTRING(2))
'MY'
' F I '
'LE'

EQUIVALENCE
STRING(1) =
STRING(2) =
STRING(3) =
LENGTH = 6

Figure 6-2 illustrates this record's structure.

LENGTH STRING

-VARSTRING-

Figure 6-2
The Record VARSTRING

r
In the code given above, VARSTRING is declared as an array of eleven
characters. The first EQUIVALENCE statement declares the first element
of VARSTRING equal to the variable LENGTH. The second EQUIVALENCE
statement declares elements 2 through 11 of VARSTRING equal to elements
1 through 10, respectively, of an array named STRING. The characters
'MYFILE' are assigned to array STRING, two characters to an element.
The value 6 is assigned to LENGTH because six characters are assigned
to STRING. The effect of this code is to make VARSTRING a two-element
record that corresponds in structure to the CHAR*VARYING data type of
PL/ I .

In F77 all of STRING can be assigned at once, as follows

r
r

INTEGER*2 LENGTH, VARSTRING(11)
CHARACTER*20 STRING
EQUIVALENCE(LENGTH, VARSTRING(1))
EQUIVALENCE(VARSTRING(2), STRING)
STRING(1:6) = 'MYFILE'
LENGTH = 6

6-7 Second Edition

SUBROUTINES, VOLUME I

For more information about the FORTRAN EQUIVALENCE statement, see the
FORTRAN Reference Guide or the FORTRAN 77 Reference Guide.

For example, suppose a program written in FTN or F77 is to call
subroutine GV$GET. The program must declare data types for the
parameters of GV$GET that correspond to the data types declared for the
subroutine in the following DCL statement:

DCL GV$GET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN);

The following FTN statements declare that two CHAR(*)VAR arrays, VARNAM
and VARVAL, consist of eleven elements each, and that each element is
of the data type INTEGER*2.

INTEGER*2 VARNAM(11)
INTEGER*2 VARVAL(11)

VARNAM and VARVAL are each to consist of an element containing a count
of characters and a ten-element field containing the characters. The
following statement defines these elements of VARNAM and VARVAL:

INTEGER*2 LEN1, STR1(10), LEN2, STR2(10)

The preceding statement declares as INTEGER*2:

• The character count (LEN1) of VARNAM

• Each of the ten elements of (STR1(10)), the character field
of VARNAM

• The character counter (LEN2) of VARVAL

• Each of the ten elements of (STR2(10)), the character field
of VARVAL

The following statement declares as INTEGER*2 the second FIXED BIN
parameter of GV$GET:

INTEGER*2 CODE

The first EQUIVALENCE statement below declares that LEN1 corresponds to
the first element of VARNAM. The second EQUIVALENCE statement pairs
elements of VARNAM with elements of STR1: the second element of VARNAM
corresponds to the first element of STR1, the third element of VARNAM
corresponds to the second element of STR1, and so on.

S e c o n d E d i t i o n 6 - 8

CALLING SUBROUTINES FROM FORTRAN

EQUIVALENCE(LEN1, VARNAM(1))
EQUIVALENCE(VARNAM(2), STR1(1))

Figure 6-3 illustrates the effect of the EQUIVALENCE statements above

LEN1 STR1

LEN1
or

VARNAM(1)

STR1(1)
or

VARNAM(2)

STR1(2)
or

VARNAM(3)

STR1(3)
or

VARNAM(4)

STR1(4)
or

VARNAM(5)

STR1(5)
or

VARNAM(6)

STR1(6)
or

VARNAM(7)

STR1(7)
or

VARNAM(8)

STR1(8)
or

VARNAM(9)

STR1(9)
or

VARNAM(10)

STR1(10)
or

VARNAM(11)

Figure 6-3
The Array VARNAM

The first EQUIVALENCE statement below declares that LEN2 corresponds to
the first element of VARVAL. The second EQUIVALENCE statement pairs

the second element of VARVAL
of VARVAL

elements of VARVAL with elements of STR2
corresponds to the first element of STR2, the third element
corresponds to the second element of STR2, and so on.

EQUIVALENCE(LEN2, VARVAL(1))
EQUIVALENCE(VARVAL(2), STR2(1))

Figure 6-4 illustrates the effect of the EQUIVALENCE statements above.
If an array is specified in an EQUIVALENCE statement without a
subscript, the subscript is assumed by default to be (1).

LEN2 STR2

LEN2
or

VARVAU1)

STR2(1)
or

VARVAL(2)

STR2(2)
or

VARVAL(3)

STR2(3)
or

VARVAL(4)

STR2(4)
or

VARVAL(5)

STR2(5)
or

VARVAL(6)

STR2(6)
or

VARVAL(7)

STR2(7)
or

VARVAL(8)

STR2(8)
or

VARVAL(9)

STR2(9)
or

VARVAL(10)

STR2(10)
or

VARVAL(11)

Figure 6-4
The Array VARVAL

r
r

The following statement calls subroutine GV$GET with the arguments
defined above; note that the third argument, declared as a FIXED BIN
parameter, can be expressed as the numeric literal 20.

6-9 Second Edition

SUBROUTINES, VOLUME I

CALL GV$GET(VARNAM,VARVAL, 20, CODE)

In F77, the parameters of GV$GET can be declared as follows

INTEGER*2 CODE, LENl, LEN2, VARLEN
CHARACTER*20 STRl, STR2
INTEGER*2 VARNAM(11)
INTEGER*2 VARVAL(11)
EQUIVALENCE(LENl, VARNAM(1))
EQUIVALENCE(LEN2, VARVAL(1))
EQUIVALENCE(VARNAM(2), STRl(1))
EQUIVALENCE(VARVAL(2), STR2(1))

The following statement calls GV$GET with the arguments defined in the
code above.

CALL GV$GET(VARNAM, VARVAL, VARLEN, CODE)

F77: CHARACTERS
FTN: Integer Array
PL/I: CHARACTER(n)NONVARYING

The F77 data type CHARACTERS can be used as an equivalent of the PL/I
data type CHARACTER(n)NONVARYING, usually declared as CHARACTER(n).

FTN can pass short integer arrays to subroutines expecting parameters
of the type CHARACTER(n). Use one array element for each two
characters to be passed. Thus, the dimension of the integer array
should be one-half the value of the (n) in CHARACTER(n), rounded up.

For example, an FTN program that calls subroutine TIMDAT must declare
da ta types tha t co r respond to the da ta types dec la red fo r the
subroutine in the following DCL statement:

DCL TIMDAT (1 , FIXED BIN);

The fol lowing statements declare data types for the parameters of
TIMDAT that correspond to the data types declared in the preceding DCL
s ta tement :

INTEGER*2 STRING(28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME,-TIME1, TIME2, NAME(3)

S e c o n d E d i t i o n 6 - 1 0

CALLING SUBROUTINES FROM FORTRAN

The preceding statements declare the following as INTEGER*2.

• Each of the 28 elements of array STRING,
• The variable NUM,
• Each of the three elements of array DATE,
• The variables TIME, TIME1, and TIME2, and
• Each of the three elements of the array NAME.

The following EQUIVALENCE statements subdivide array STRING into five
fields, each of which holds separate items of system information as
returned by TIMDAT:

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(STRING(1), DATE)
(STRING(4), TIME)
(STRING (5), TIMED
(STRING(6), TIME2)
(STRING(13), NAME)

The five equivalence statements equate the values of DATE, TIME, TIME1,
TIME2, and NAME with specified elements in array STRING. The three
elements of array DATE are equated with the first three elements of
array STRING, TIME is equated with the fourth element of array STRING,
and so on. Thus the ASCII and numeric characters of system and user
information returned by subroutine TIMDAT are all assigned to different
elements of array STRING.

The following statement calls subroutine TIMDAT.

CALL TIMDAT(STRING, NUM)

Note

as CHARACTERS are not necessarily aligned
Thus, passing CHARACTERS parameters to

Variables declared
on word boundaries.
FTN subroutines may cause serious errors.

r
r

PL/I: POINTER

Neither FTN nor F77 supports a pointer data type. PL/I subroutines
that expect this data type should not be called from FORTRAN. Only
experienced programmers should attempt to pass the expression LOC(name)
to a non-PL/I subroutine that expects a pointer.

There is no convenient FORTRAN data type for storing a 48-bit pointer.
Currently, most Prime system subroutines use 32 bits of the pointer
available, ignoring the extra 16 bits if they are present. FORTRAN can
create only two-word pointers using LOC(name).

6-11 Second Edition

SUBROUTINES, VOLUME I

FORTRAN cannot directly handle a pointer returned to it. If you want
to use a pointer that has been returned to a program written in FTN or
F77, receive the pointer in a variable declared INT*4, and use the
resulting value as an argument of MOVEW$ to gain access to the data
pointed at.

S e c o n d E d i t i o n 6 - 1 2

Calling Subroutines
From Pascal

CALL FORMAT

Before a Prime subroutine or function can be called by a Pascal
program, it must be declared as a procedure or a function. To declare
a subroutine or a function as a procedure, use a statement of the
following format:

PROCEDURE sub-name[([VAR] arg:type[; [VAR] arg:type]...)];EXTERN;

The keyword EXTERN must be added to the end of the PROCEDURE or
FUNCTION declaration for any procedure or function that is compiled
separately from the Pascal calling program.

To call a subroutine as a procedure from a program written in Pascal,
use a statement of the following format:

sub-name[(argument [,argument]...)];

In the Pascal procedure statement, the element sub-name must be the
name of a subroutine, and the arguments can be data names or constants.

7 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

To declare a subroutine as a function in a program written in Pascal,
use a FUNCTION statement of the following format:

FUNCTION function-name[([VAR] arg: type [;[VAR] arg:type]...)]: type;
EXTERN;

To call a function, use statements similar to the following:

X := function(data...);

IF function(data...) = X THEN ...;

Note

Any arguments that are supplied or changed by the subroutine
must be declared as variable parameters, preceded by the
reserved word VAR. These arguments are described as OUTPUT
parameters or INPUT/OUTPUT parameters in the subroutine
descriptions in the other volumes of this guide.

USING SYSCOM FILES

You can insert the SYSCOM file that defines error codes into a Pascal
program by including the following statement in the CONST section of
the program:

%INCLUDE 'SYSCOM>ERRD.INS.PASCAL' ;

You can insert the SYSCOM file that defines key codes into a Pascal
program by including the following statement in the CONST section of
the program:

%INCLUDE 'SYSCOM>KEYS.INS.PASCAL' ;

You can insert the SYSCOM file that defines argument codes into a
Pascal program by including the following statement in the CONST
section of the program:

%INCLUDE 'SYSCOM>A$KEYS.INS.PASCAL' ;

S e c o n d E d i t i o n 7 - 2

CALLING SUBROUTINES FROM PASCAL

DATA TYPES

Table 7-1 suggests how PL/I and FORTRAN data types can be represented
in Pascal.

Table 7-1
Data Type Equivalents: Pascal

Generic Unit Pascal PL/I FTN F77

16 bits INTEGER FIXED BIN INTEGER
(Halfword) Enumerated FIXED INTEGER*2 INTEGER*2

BIN(15) LOGICAL LOGICAL*2

32 bits LONGINTEGER FIXED INTEGER
(Word) BIN(31) INTEGER*4 INTEGER*4

LOGICAL
LOGICAL*4

32 bits REAL FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precis ion) FLOAT

BIN(23)

64 bits LONGREAL FLOAT REAL*8 REAL*8
(Float double BIN(47)
precis ion)

1 left- BOOLEAN BIT(l)
aligned bit ALIGNED
(Halfword)

Bit string SET BIT(n)

Byte string CHAR CHAR(n) In teger CHARACTER
(Max. 32767) PACKED

ARRAY[1..n]
OF CHAR

Array

7-3 Second Edition

SUBROUTINES, VOLUME I

Table 7-1 (continued)
Data Type Equivalents: Pascal

Generic Unit Pascal P L / I F T N F77

Varying STRING[n] CHAR(n)
character STRING VARYING
s t r i n g CHAR(*)

VARYING

48 bits po in te r POINTER
(Three
halfwords)

Record RECORD Structure
Structure

The following sections suggest how FORTRAN and PL/I data types can be
declared in Pascal. For more information about each data type, see the
chapter titled OVERVIEW OF SUBROUTINES in Volume II, III, or IV of this
guide.

Boolean Values

Some functions return Boolean (true/false) values through FIXED BIN
parameters. In Pascal, these parameters should be declared as INTEGER.

Subroutines that are written in FORTRAN and return Boolean values
return the Boolean values through the LOGICAL data type. In Pascal,
declare these parameters as INTEGER.

Second Edition 7-4

CALLING SUBROUTINES FROM PASCAL

Pascal: INTEGER
PL/I: FIXED BIN(15)
FTN: INTEGER, INTEGER*2, or LOGICAL
F77: INTEGER*2 or LOGICAL*2

The Pascal data type INTEGER can be used as an equivalent of the PL/I
data type FIXED BIN(15) (also called FIXED BIN); of the FTN data types
INTEGER, INTEGER*2, and LOGICAL; and of the F77 data types INTEGER*2
and LOGICAL*2.

For example, a Pascal program that calls the subroutine SRCH$$, which
is written in PL/I, must declare for the parameters of SRCH$$ the data
types that correspond to the data types expected by the subroutine, as
declared in the following DCL statement:

DCL SRCH$$ ENTRY (FIXED BIN, CHAR(32) VAR, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the PL/I data types declared for the parameters of
SRCH$$ in the DCL statement above.

TYPE
NAMETYPE = PACKED ARRAY[1,

PROCEDURE SRCH$$(KEY
FILENAME
NAMELENGTH
FILEUNIT
FILETYPE
VAR CODE

8] OF CHAR;
INTEGER;
NAMETYPE;
INTEGER;
INTEGER;
INTEGER;
INTEGER); EXTERN;

The PROCEDURE statement declares five parameters of SRCH$$ as INTEGER,
the Pascal data type that corresponds to the PL/I data type FIXED BIN.
The PROCEDURE statement also declares the second parameter as NAMETYPE;
the preceding TYPE statement declares NAMETYPE as equivalent to PACKED
ARRAY[1..8] OF CHAR, which corresponds to CHAR(32) VAR. The programmer
selects for NAMETYPE the length that is likely to be needed (here, 8).

Pascal: LONGINTEGER
PL/I: FIXED BIN(31)
FTN: INTEGER*4
F77: INTEGER, INTEGER*4, LOGICAL, or L0GICAL*4

The Prime Pascal data type LONGINTEGER can be used as an equivalent of
the PL/I data type FIXED BIN(31), of the FTN data type INTEGER*4, and
of the F77 data types INTEGER, INTEGER*4, LOGICAL, and L0GICAL*4. The
LONGINTEGER data type is a Prime extension to ANSI and ISO standard
Pasca l .

7 -5 Second Edition

SUBROUTINES, VOLUME I

For example, a Pascal program that calls the subroutine RNUM$A, which
is written in FORTRAN, must declare the INTEGER*4 parameter of RNUM$A
as LONGINTEGER. The parameter declarations in subroutine RNUM$A are as
fo l lows.

INTEGER*2 msg(l), msglen, numkey
INTEGER*4 value

The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the FORTRAN data types declared for the parameters
of RNUM$A in the subroutine description above.

TYPE
MSGTYPE = PACKED ARRAY[1..14] OF CHAR;

PROCEDURE RNUM$A(MSG : MSGTYPE;
MSGLEN : INTEGER;
NUMKEY : INTEGER;
VAR VALUE : LONGINTEGER);EXTERN;

MESSAGE, the first parameter of RNUM$A, is declared as MSGTYPE, which
corresponds to PACKED ARRAY[1..14] OF CHAR; the array can be of any
length required to accommodate the message. The second and third
parameters are declared as INTEGER, which correspond to the FORTRAN
data type INTEGER*2. The fourth parameter is declared as LONGINTEGER,
which corresponds to the FORTRAN data type INTEGER*4.

Pascal: REAL
PL/I: FLOAT BIN, FLOAT BIN(23)
FTN and F77: REAL or REAL*4

The Pascal data type REAL can be used as an equivalent of the PL/I data
types FLOAT BIN (also called FLOAT BIN(23)), and of the FTN and F77
data types REAL and REAL*4. When a Pascal program calls a subroutine
that uses FLOAT BIN, REAL, or REAL*4 parameters, it must declare these
parameters as REAL. Constants passed as real arguments to FORTRAN
functions should be in scientific format (x.xEyy).

For example, a Pascal program that calls the function RAND$A must
declare for each parameter of RAND$A the data type that corresponds to
the data type declared for the parameter in the function. Function
RAND$A has two parameters, a seed value which is used to generate
random numbers, and a return value (rt_val) which is assigned the value
of each random number generated. The seed value and return value must
be declared as INTEGER*4 and REAL*4, respectively. The return value
can also be declared REAL*8.

S e c o n d E d i t i o n 7 - 6

CALLING SUBROUTINES FROM PASCAL

In Pascal, the following VAR and FUNCTION statements declare Pascal
data types that correspond to the data types expected by the function.
The parameter seed must be declared REAL in Pascal.

VAR
SEED1, THISONE : REAL;
INDEX : INTEGER;

FUNCTION RAND$A(VAR SEED : REAL) : REAL; EXTERN;
BEGIN

SEED1 := 1.2;
FOR INDEX := 1 TO 10 DO

BEGIN
THISONE := RAND$A(SEED1);
WRITELN(INDEX, ':', THISONE);

END

The FUNCTION statement declares the function's return value and the
seed value seed as real numbers. This is necessary because the return
value of function RAND$A is a real number.

Pascal: LONGREAL
PL/I: FLOAT BIN(47)
FTN and F77: REAL*8

The Prime Pascal data type LONGREAL can be used as an equivalent of the
PL/I data type FLOAT BIN(47) and of the FORTRAN data type REAL*8. The
LONGREAL data type is a Prime extension to ANSI and ISO standard
Pascal.

For example, the return value of function RAND$A can be received by a
REAL*8 variable, declared LONGREAL in Pascal. The function can be
called as in the example in the preceding section, with the variable
that is to receive the return value, thisone, declared LONGREAL, as
fo l lows:

THISONE : LONGREAL;

The return value must also be declared LONGREAL in the function
declaration, as follows:

FUNCTION RAND$A(VAR SEED : REAL) : LONGREAL; EXTERN;

7 - 7 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Pascal: BOOLEAN or SET OF Q..x
PL/I: BIT(l) ALIGNED or BIT(n)

The Pascal data type BOOLEAN can be used as an equivalent of the PL/I
data type BIT(l) ALIGNED. In Pascal, the PL/I types 'O'B and 'l'B can
be read as FALSE and TRUE, respectively.

If the n of a BIT(n) data type is greater than 1, this data type
corresponds to the Pascal data type SET OF 0..x. The base type of SET
OF 0..x must be an INTEGER subrange starting at 0, with x equal to
n - 1. For example, a PL/I data type BIT(11) can be declared in Pascal

10; a BIT(48!as SET OF 0
and so on.

data type can be declared as SET OF 0..47;

Whatever the n of a BIT(n) data type, if the BIT data items are
elements of a structure, all the adjacent bits can be summed into a
single SET.

If the n of a BIT(n) data type is 16 or if the number of bits in a
structure totals 16, you can declare the parameter as an INTEGER.

For example, a Pascal program that calls subroutine UID$BT must declare
for the parameter of UID$BT the data type that corresponds to the data
type declared for the parameter in the following DCL statement:

DCL UID$BT ENTRY (BIT (48) ALIGNED);

As the value of (n) in this BIT(n) declaration is greater than 1, the
Pascal program can declare the parameter as SET OF 0..47. The
following TYPE statement defines a non-standard data type, BITSET, as
equivalent to SET OF 0..47; the following PROCEDURE statement declares
UID$BT as a Pascal procedure whose parameter is data type BITSET:

TYPE
BITSET = SET OF 0. .47;

PROCEDURE UID$BT (VAR BITS BITSET); EXTERN;

Note

The data type BOOLEAN can also be declared for parameters of
the type BIT(16) ALIGNED or for parameters whose description
states that only the most significant bit is used.

Second Edition l - l

CALLING SUBROUTINES FROM PASCAL

Pascal: PACKED ARRAY[l..n] OF CHAR
PL/I; CHARACTER(n)
FTN: Integer Array
F77: CHARACTERS

The Pascal data type PACKED ARRAY[l..n] OF CHAR can be used as an
equivalent of the PL/I data type CHARACTER(n) NONVARYING, also called
CHARACTER(n) or CHAR(n). The CHAR(n) parameter must be passed an array
that contains exactly n characters.

The Pascal data type PACKED ARRAY[l..n] OF CHAR also corresponds to an
FTN integer array, and to the F77 data type CHARACTERS.

A function that returns any of these data types cannot be called from
P a s c a l , b e c a u s e P a s c a l f u n c t i o n s c a n n o t r e t u r n a r r a y s .
Multidimensional arrays should not be passed between FORTRAN and
Pascal, because columns and rows will be reversed.

For example, a Pascal program that calls the subroutine DELE$A, which
is wr i t ten in FORTRAN, must declare the subrout ine 's INTEGER*2
parameter as PACKED ARRAY[l..n] OF CHAR. The parameter declarations in
the subroutine include the following statements:

INTEGER*2 name(l), namlen
LOGICAL log

When declared as INTEGER*2, the variable name(1) represents an array or
character string whose length is unknown at the time of declaration.
The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the PL/I data types in the subroutine description of
DELE$A:

TYPE
NAMETYPE = PACKED ARRAY[1..8] OF CHAR;

VAR

The following FUNCTION statement declares DELE$A as a Pascal function
with parameters of the data types NAMETYPE and INTEGER; the FUNCTION
statement also declares that the value of the function, when executed,
is an INTEGER:

FUNCTION DELE$A(FILNAM : NAMETYPE;
LEN : INTEGER) : INTEGER; EXTERN;

7 - 9 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Pascal: STRING[n]
PL/I: CHARACTER(n) VARYING

The Pascal data type STRING[n] can be used as an equivalent of the PL/I
data type CHARACTER(n) VARYING. The STRING[n] data type is a Prime
extension of ANSI and ISO standard Pascal.

Note

Some system subroutines (such as SRCH$$) that expect a
parameter of the type CHAR(n) VAR may require you to declare
the parameter as PACKED ARRAY[l..n] OF CHAR. If an error
occurs when you declare the parameter STRING[n], declare the
parameter as PACKED ARRAY.

In the Pascal data type STRING[n], the value of n, which specifies the
data type's maximum length, can be any integer up to 32767. The Pascal
data type must have the same maximum length as the PL/I data type to
which it corresponds.

For example, a Pascal program that calls subroutine AC$SET must declare
for each parameter of AC$SET the data type that corresponds to the data
type declared for the parameter in the following DCL statement. This
DCL statement declares the second parameter of AC$SET as CHAR(128) VAR.

DCL AC$SET ENTRY (FIXED BIN, CHAR(128) VAR, PTR, FIXED BIN)

The fol lowing TYPE statement defines the data type STRING7 as
equivalent to the standard Pascal data type STRING[7] (Note that
STRING7 could be declared any length up to 128.). The PROCEDURE
statement declares NAME, the second parameter of AC$SET, as equivalent
to STRING7.

TYPE
STRING7 = STRING[7];

PROCEDURE AC$SET(KEY : INTEGER;
NAME : STRING7;
PTR : ACL_PTR;
VAR CODE : INTEGER); EXTERN;

Second Edition 7-10

CALLING SUBROUTINES FROM PASCAL

r

Pascal: STRING or STRING[n]
PL/I: CHARACTER(*) VARYING

The Prime Pascal data types STRING or STRING[n] can be used as an
equivalent of the PL/I data type CHARACTER(*) VARYING. The data type
STRING is a Prime extension to ANSI and ISO standard Pascal. An
argument declared as a STRING, with no declared maximum length, can be
up to 80 characters long.

A STRING is implemented as a structure that contains a count of the
characters in the structure followed by the characters themselves, as
shown in the diagram below.

05

Count Character String

Figure 7-1
CHAR(*) VAR Record Structure

CHARACTER(*) VARYING is identical to the CHARACTER(n) VARYING data
t ype , excep t t ha t i t has no spec i fied max imum leng th , whe reas
CHARACTER(n) VARYING has a maximum length specified by n.

A Pascal program that calls GV$GET must declare for each parameter of
GV$GET the data type that corresponds to the data type declared for the
parameter in the following DCL statement:

DCL GV$GET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN);

The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the PL/I data types declared for the parameters of
GV$GET in the DCL statement above:

r
r

TYPE
CHARVAR = STRING[4];

PROCEDURE GV$GET(NAME
VAR VALUE
LENGTH
VAR CODE

CHARVAR;
CHARVAR;
INTEGER;
INTEGER); EXTERN;

The TYPE statement defines data type
standard Pascal data type STRING[4].
the first two parameters of GV$GET as

CHARVAR as equivalent to the
The PROCEDURE statement declares
CHARVAR, and the second two

7-11 Second Edition

SUBROUTINES, VOLUME I

parameters as INTEGER, the Pascal data type that corresponds to the
PL/I data type FIXED BIN.

Pascal: pointer
PL/I: POINTER

The Pascal data type pointer can be used as an equivalent of the PL/I
data type POINTER, also known as PTR. A pointer is stored in three
halfwords (48 bits). The item to which the pointer points is declared
in PL/I with the BASED attribute (for instance, BASED FIXED BIN).

Although all Pascal pointers are three-halfword pointers, a subroutine
that uses the two-halfword PTR OPTIONS(SHORT) type can be called from
Pascal, provided that the pointer points to halfword-aligned data.
However, a Pascal pointer cannot be used within a structure if the
pointer is declared in a PL/I routine as OPTIONS(SHORT).

You can call functions that return PTR OPTIONS(SHORT) from Pascal only
by some method such as the following: declare a variable as a record
with two variants, LONGINTEGER and pointer. Declare the function with
LONGINTEGER as the data type of the returned value. Your Pascal
program can use the returned value through the pointer variant. For
example, the following code shows how function STR$AL can be called
from Pascal in this manner:

TYPE
PTR = AINTEGER;
FAKE = RECORD

CASE BOOLEAN OF
FALSE: (LI : LONGINTEGER);
TRUE: (PT : PTR)

END;
VAR

F : FAKE;
CODE : INTEGER;

FUNCTION STR$AL(RESERVED1 : INTEGER;
BLOCK_SIZE : LONGINTEGER;
RESERVED2 : INTEGER;
VAR CODE : INTEGER) : LONGINTEGER; EXTERN;

BEGIN
F.LI := STR$AL(0, 2, 0, CODE);
WRITELN('LONGINT VALUE: ', F.LI);
F.PTA := 0;
WRITELN('F.PTA : ', F.PTA);
IF (CODE = E$ALSZ) OR (CODE = E$ROOM) OR (CODE = E$HPER) THEN

WRITELN('STANDARD ERROR CODE RETURNED');
WRITELN('CODE: ', CODE);

END.

S e c o n d E d i t i o n 7 - 1 2

CALLING SUBROUTINES FROM PASCAL

When a Pascal program calls a subroutine that uses a POINTER argument,
it must declare this parameter as pointer. For example, the subroutine
AC$SET uses a POINTER argument, as indicated by the following DCL
s ta temen t :

DCL AC$SET ENTRY (FIXED BIN, CHAR(128) VAR, PTR, FIXED BIN);

The following TYPE statement defines special data types that can be
used to declare data types for the parameters of AC$SET. Among these
special data types is the type ACL_PTR, which corresponds to the
pointer data type AACLTYPE:

TYPE
STRING7 = STRING[7];
RANGETYPE = 1..2 ;
ACL_PTR = AACLTYPE;
ACLTYPE = RECORD

VERSION INTEGER;
ENTRY_COUNT : RANGETYPE;
ENTRIES : ARRAY[RANGETYPE] OF STRING;

END;

The following VAR statement declares data types for the parameters of
AC$SET. Among these parameters is THISPTR, which is declared as
ACL_PTR, a pointer data type:

KEY : INTEGER
ACLNAME : STRING7
THISPTR : ACL_PTR
ERRCODE : INTEGER
ACL : ACLTYPE

The following PROCEDURE statement declares AC$SET as a Pascal
procedure, with parameters that correspond in data type to the data
types declared in the DCL statement above:

PROCEDURE AC$SET(KEY : INTEGER;
NAME : STRING7;
PTR : ACL_PTR;
VAR CODE* : INTEGER); EXTERN;

7-13 Second Edition

SUBROUTINES, VOLUME I

The following statement calls AC$SET with arguments that correspond in
data type to the data types declared in the DCL statement above. The
third argument, THISPTR, is of the data type pointer:

AC$SET (KEY, ACLNAME, THISPTR, ERRCODE);

Pascal: RECORD
PL/I: Structure

The Prime Pascal data type RECORD can be used as an equivalent of a
PL/I structure. The data types of the Pascal RECORD fields must
correspond to the data types of the members of the PL/I structure.

When a Pascal program calls a subroutine that uses a structure, it must
declare this structure as a RECORD parameter. For example, a Pascal
program can call the subroutine TIMDAT, which is written in PL/I, to
read system and user information into a Pascal record.

TIMDAT expects two parameters, a PL/I structure and a FIXED BIN data
item. The structure can be declared in Pascal as a record consisting
of 11 different fields. The FIXED BIN parameter must be declared
INTEGER in Pascal; 28 is the usual value assigned this parameter.

The following statements define the data type tabletype, corresponding
to the PL/I structure expected by TIMDAT:

TYPE
TABLETYPE RECORD

MMDDYY
TIMEjyilN
TIME_SEC
TIME_TCK
CPU_SEC
CPU_TCK
DISK_SEC
DISK_TCK
TCK_SEC
USER_NUM
USERNAME

END;

PACKED ARRAY[1
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
PACKED ARRAY[1

6] OF CHAR;

32] OF CHAR

The following statement declares the variable table as the type
_____________:

VAR
TABLE : TABLETYPE;

Second Edition 7-14

CALLING SUBROUTINES FROM PASCAL

The following PROCEDURE statement declares subroutine TIMDAT as a
Pascal procedure with two parameters, one as data type tabletype and
one as INTEGER:

PROCEDURE TIMDAT(VAR ARR : TABLETYPE;
SIZE : INTEGER); EXTERN;

In the following Pascal code, the call:

TIMDAT(TABLE, 28);

reads the contents of the system and user information into a record of
11 fields. The fol lowing statements display this information.

BEGIN
TIMDAT(TABLE, 28);
WITH TABLE DO

BEGIN
W R I T E L N (' D A T E I S ' , M M D D Y Y) ;
WRITELN('MINUTES USED ',TIME_MIN)
WRITELN('SECONDS ELAPSED ',TIME_SEC)
WRITELN('TICKS ELAPSED ',TIME_TCK)
WRITELN('CPU SECONDS USED ',CPU_SEC);
W R I T E L N (' C P U T I C K S ' , C P U _ T C K) ;
WRITELN('DISK SECONDS USED ',DISK_SEC);
WRITELN('DISK TICKS USED ',DISK_TCK);
WRITELN('TICKS PER SECOND ',TCK_SEC);
WRITELN('USER NUMBER ',USER_NUM);
W R I T E L N (' U S E R N A M E ' , U S E R N A M E) ;

END
END.

r
r

7 - 1 5 S e c o n d E d i t i o n

Calling Subroutines
From PL/I

CALL FORMAT

Programs written in PL/I must declare as external procedures any
subroutines that they call. In PL/I, subroutine declarations are of
the following form:

DECLARE sub-name EXTERNAL ENTRY[(type [,type] ...)];

In the DECLARE statement, sub-name is the name of the subroutine to be
called, and type is the data type of an argument to be passed to the
subroutine.

Subroutines are called by statements of the following form:

CALL sub-name[(argument, [,argument] ...)];

In the CALL statement, argument may be either a constant or a data
name.

8 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

PL/I programs must also declare any functions that they are to call
Function declarations are of the following form:

DECLARE function-name EXTERNAL ENTRY[(type ...)] RETURNS (type);

PL/I can call a function using a statement that evaluates the function
and assigns its value to a variable; such statements are of the
following form:

X = function-name[(identifier ...)];

PL/I can also call a function using a control statement, such as an
IF/THEN statement, which performs a specified action if the function is
of a specified value. Such statements are of the following form:

IF function[(identifier...)] = 0 THEN ...action;

Note

In this chapter, the term PL/I stands for both full PL/I and
PL/I Subset G (PL/I-G).

THE OPTIONS (SHORTCALL) DECLARATION

The OPTIONS(SHORTCALL) declaration calls PMA procedures with the PMA
instruction JSXB instead of the more common PCL instruction. A
procedure call of this type is faster than one using PCL. However, the
called procedure must be written to expect this kind of call. As of
Rev. 20.2, the only system subroutines that can and must be declared in
this way are MKONU$ and ALOC$S.

The OPTIONS(SHORTCALL) declaration is of the following form:

DECLARE procedure-name EXTERNAL ENTRY [(argl [,arg2]...)]
OPTIONS(SHORTCALL [(stack-size)]);

In the DECLARE statement, stack-size specifies the extra space needed
for the calling procedure's stack. The default size is 8, but the
descriptions of MKONU$ and ALOC$S explain which stack size to specify.
This call does not create a new stack for storage, as does PCL. The
calling procedure's stack space is used. Thus it may be necessary to
specify stack size in the declaration in order to enlarge the calling

S e c o n d E d i t i o n 8 - 2

CALLING SUBROUTINES FROM PL/I

stack. For example, MKONU$ requires a 28-word stack, so the user's
stack must be large enough to accommodate this requirement. If the
stack is not large enough, the return from the subroutine will cause
unpredictable error messages.

Arguments can be used with the SHORTCALL option. The computer will set
up the L register to point to an array containing the addresses of the
arguments, or, if there is only one argument, to the address of the
argument itself. No type checking is done. Both MKONU$ and ALOC$S
take more than one argument.

USING SYSCOM FILES

The SYSCOM file that defines error codes can be inserted in a PL/I
program by including the following statement in the program before the
subroutine declaration:

%INCLUDE 'SYSC0M>ERRD.INS.PL1';

You can insert the SYSCOM file that defines key codes in a PL/I program
by including the following statement before the subroutine declaration:

%INCLUDE 'SYSCOM>KEYS.INS.PLl' ;

You can insert the SYSCOM file that defines argument codes in a PL/I
program by including the following statement in the program before the
subroutine declaration:

%INCLUDE 'SYSCOM>A$KEYS.INS.PLl' .

DATA TYPES

r
r

Many PRIMOS subroutines are written in a version of PL/I. Moreover,
most of the usage descriptions in the Subroutines Reference Guide use
PL/I terminology. To declare and call these subroutines from PL/I, use
the same terminology.

Some subroutines, however, are written in FORTRAN, and some of these
have usage sections that use FORTRAN terminology. Most subroutines
that use FORTRAN terminology are described in Volume IV.

Table 8-1 summarizes the argument types
functions that can be called from PL/I.

1-3

of FORTRAN subroutines and

Second Edition

SUBROUTINES, VOLUME I

Table 8-1
Data Type Equivalents: PL/I

Generic Unit PL/ I FTN F77

16 bits FIXED BIN INTEGER
(Halfword) FIXED INTEGER*2 INTEGER*2

BIN(15) LOGICAL L0GICAL*2

32 bits FIXED INTEGER
(Word) BIN(31) INTEGER*4 INTEGER*4

LOGICAL
LOGICAL*4

32 bits FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precis ion) FLOAT

BIN(23)

64 bits FLOAT REAL*8 REAL*8
(Float double BIN(47)
precis ion)

Byte string CHAR(n) Integer CHARACTER
(Max. 32767) Array

The following sections explain how these argument types relate to PL/I
For more information, see the chapter titled "Overview of Subroutines'
in Volume II, III, or IV of this guide.

PL/I: FIXED BIN or FIXED BIN(15)
FTN: INTEGER, INTEGER*2
F77: INTEGER*2

The PL/I data type FIXED BIN(15), also called FIXED BIN, can be used as
an equivalent of the FTN and F77 data type INTEGER*2.

For example, a PL/I program that calls subroutine RNUM$A must declare
d a t a t y p e s t h a t c o r r e s p o n d t o t h e t y p e s i n t h e s u b r o u t i n e ' s
descr ipt ion, as fo l lows:

INTEGER*2 msg(l), msglen, numkey
INTEGER*4 value

Second Edition 1-4

CALLING SUBROUTINES FROM PL/I

The following statement in the PL/I program declares corresponding PL/I
data types:

DCL RNUM$A EXTERNAL ENTRY (CHAR(14), FIXED BIN, FIXED BIN,
FIXED BIN(31));

The following PL/I statement inserts the file SYSCOM>A$KEYS.PLl into
the PL/I program; this file makes it possible to use argument keys as
arguments in the call to RNUM$A:

%INCLUDE 'SYSC0M>A$KEYS.PL1';

The following PL/I statement declares the variable numvalue as FIXED
BIN(31); this variable is to be used as the INTEGER*4 parameter of
RNUM$A:

DCL NUMVALUE FIXED BIN(31);

The following PL/I statement calls subroutine RNUM$A with the arguments
defined above:

CALL RNUM$A ('ENTER A NUMBER', 14, A$DEC, NUMVALUE);

PL/I: FIXED BIN(31)
FTN: INTEGER*4
F77: INTEGER, INTEGER*4, LOGICAL, L0GICAL*4

The PL/I data type FIXED BIN(31) can be used as an equivalent of the
FTN data type INTEGER*4 and of the F77 data types INTEGER, INTEGER*4,
LOGICAL, and L0GICAL*4.

For example, a PL/I program that calls subroutine RAND$A must declare
data types that correspond to the types in the function's description,
as fol lows:

INTEGER*4 seed
R E A L * 8 r t _ v a l

C rt_val can also be declared REAL*4

1 - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

The following PL/I statement declares the variable seed as FIXED
BIN(31), the PL/I data type that corresponds to INTEGER*4. The
statement also initializes seed with the value 1. This variable is to
be used as the argument of RAND$A.

DCL SEED STATIC FIXED BIN(31) INITIAL (1);

The following PL/I statement declares the variable return as FLOAT, the
PL/I data type that corresponds to REAL*4. This variable is to receive
the return value of function RAND$A.

DCL RETURN FLOAT;

The following PL/I statement declares function RAND$A with parameters
of data types that correspond to the data types declared in the
function description above; note how the seed parameter is declared
FIXED BIN(31), the PL/I data type that corresponds to INTEGER*4.

DCL RAND$A EXTERNAL ENTRY (FIXED BIN(31)) RETURNS (FLOAT);

The following statements call RAND$A with the arguments declared above

DCL INDEX FIXED BIN;
DO INDEX = 1 TO 10;

RETURN = RAND$A(SEED);
PUT SKIP LIST(REAL4);

END;

PL/I: FLOAT BIN or FLOAT BIN(23!
FTN and F77: REAL or REAL*4

The PL/I data type FLOAT BIN, also known as FLOAT or FLOAT BIN(23), can
be used as an equivalent of the FTN and F77 data types REAL or REAL*4.
Constants passed to a FORTRAN function that expects REAL arguments
should be in scientific format (x.xE+yy).

For an illustration of how to call a function that returns a REAL*4
value, see the preceding section.

PL/I: FLOAT BIN(47)
FTN and F77: REAL*8

The PL/I data type FLOAT BIN(47) can be used as an equivalent of the

S e c o n d E d i t i o n 8 - 6

CALLING SUBROUTINES FROM PL/I

FTN and F77 data type REAL*8.
scientific format (x.xE+yy).

Data of this type should be in

For example, the section
contains an example of

about the FIXED BIN(31)
a call to function RAND$A.

data type above
The variable that

receives the return value of this function can be declared REAL*8, or
in PL/I, FLOAT BIN(47). Thus,
could also be declared as follows:

in the example, the variable return

DCL RETURN FLOAT BIN(47);

PL/I: Integer or Character Array
FTN and F77: Integer Arrays

An integer array expected by a FORTRAN subroutine should be declared in
PL/I either as an array of FIXED BINARY(15) elements, or as a character
array, depending on the kind of information to be passed.

If the subroutine parameter is a character array, you can declare it
either as CHAR(n) NONVARYING or as CHAR(*) NONVARYING.
Multidimensional arrays cannot be passed between FORTRAN (FTN or F77)
and PL/I, because columns and rows would be reversed.

For example, a PL/I program that calls function DELE$A must declare
data types that correspond to the data types in the function's
description, as follows:

INTEGER*2
LOGICAL

name(1), namlen
l o g

The following PL/I statement declares DELE$A as an external function
with arguments that correspond in type to the types declared in the
function's description above. The CHAR(8) argument is a string of
eight characters.

DCL DELE$A EXTERNAL ENTRY(CHAR(8),FIXED BIN)
RETURNS(FIXED BIN);

The following PL/I statements call DELE$A and specify the action to be
taken when DELE$A returns 1 and the action to be taken when it returns
a value other than 1:

r
r

IF DELE$A ('OBSOLETE', 8) = 1 THEN
PUT SKIP LIST ('FILE DELETED');

ELSE PUT SKIP LIST ('NO GO');

1-7 Second Edition

SUBROUTINES, VOLUME I

PL/I: FIXED BIN(15)
FTN: LOGICAL
F77: LOGICAL*2

The PL/I data type FIXED BIN(15) can be used as an equivalent of the
FTN data type LOGICAL and to the F77 data type L0GICAL*2. Arguments
declared as LOGICAL or LOGICAL*2 must have a value of 0 (false) or 1
(t rue) .

The example in the section above concerning PL/I integer and character
arrays illustrates a call to a function, DELE$A, that returns a LOGICAL
value.

PL/I: CHAR(n) NONVARYING or literal
FTN: ASCII Character (String or Array)

An ASCII string expected by a subroutine should be declared in PL/I as
CHAR(n) NONVARYING or passed as a literal.

Second Edition

Calling Subroutines
From PMA

CALL FORMAT

To call a subroutine from a program written in PMA, use a statement of
the following form:

CALL sub-name

The CALL statement is followed on succeeding lines by statements that
list the arguments to be passed. The succeeding statements begin with
AP (address-pointer), followed by S or SL, as discussed in the
following section.

You can also use the PCL machine instruction to call subroutines.
However, the PCL instruction requires that you declare the subroutine
as an external subroutine by means of the EXT statement, and that you
code the pointers to the subroutine. Thus, the CALL statement provides
the more convenient way to call subroutines from PMA.

Functions should be called from PMA as if they were subroutines.
However, not all functions can be called in this way. If the function
has an OPTIONAL RETURNED ARGUMENT, you can call the function as a
subroutine. If the function has a RETURNED ARGUMENT, you cannot call
the function as a subroutine.

For more information about how to call subroutines from PMA, see the
Advanced Programmer's Guide and Chapter 12 of the Assembly Language
Programmer's Guide.

9 - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

CALLING SUBROUTINES FROM V-MODE AND I-MODE PMA

When PMA calls an external subroutine in V mode or I mode, arguments
are passed by reference using the AP instruction. Each AP instruction
except the last one in a call uses S as its second operand; the last
AP instruction uses SL. All examples in this chapter can be used
either in V mode or in I mode.

CALLING SUBROUTINES FROM R-MODE PMA

When PMA calls an external subroutine in R mode, arguments are passed
by reference using the DAC pseudo-operation. If there is more than one
argument, the last DAC pseudo-operation is followed by DATA 0. This is
a convention of the operating system, not an architectural feature. If
there is only one argument, DATA 0 must not be used.

USING SYSCOM FILES

You can insert the SYSCOM file that defines error codes into a PMA
program by including the following statement in the program.

$INSERT 'SYSCOM>ERRD.INS.PMA' ;

You can insert the SYSCOM file that defines key codes into a PMA
program by including the following statement in the program.

$INSERT 'SYSCOM>KEYS.INS.PMA';

Programs written in PMA cannot use the argument keys defined in the
SYSCOM files; the numeric equivalents of these keys must be used
instead. To learn the numeric equivalents of the argument keys, list
the file SYSCOM>A$KEYS.INS.FTN, or any of the other SYSCOM files that
define argument keys. For more information about argument keys, see
Chapter 2 of this volume.

S e c o n d E d i t i o n 9 - 2

CALLING SUBROUTINES FROM PMA

DATA TYPES

The following sections describe the argument types of FORTRAN and PL/I
subroutines that can be called from PMA. For more information about
each data type, refer to the Assembly Language Programmer's Guide, or
to the chapter titled "Overview of Subroutines" in Volume II, III, or
IV of this guide.

PMA: BSS pseudo-operation
FTN or F77: INTEGER*2
PL/I: FIXED BIN(15)

The FTN and F77 data type INTEGER*2 and the PL/I data type FIXED
BIN(15), also called FIXED BIN, can be declared in PMA with the BSS
pseudo-operation.

For example, the subroutine TEXTO$ expects four arguments, of the data
types integer array, INTEGER*2, INTEGER*2, and LOGICAL. A PMA program
that calls this subroutine must pass it arguments of the corresponding
data types. The following EXT instruction declares TEXTO$ as an
external subroutine; this instruction is required only when the
subroutine is called by a PCL instruction, as in this example:

EXT TEXTO$

The following PMA statements declare the data types of the last two
arguments of TEXTO$:

LEN DATA 6 INTEGER*2 ARGUMENT
O K B S S 1 L O G I C A L A R G U M E N T

The following statement calls TEXTO$, with the first two arguments
specified as literals:

EXT TEXTO$
MAIN PCL TEXT_IP,*

AP =C CTRLFL',S
A P = 6 , S
AP LEN,S
AP OK,SL

TEXT_IP IP TEXTO$

9 - 3 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Note

Although BSS is ordinarily used in PMA to declare an INTEGER*2
parameter, the DYNM, BSZ, OCT, DEC, HEX, or DATA instructions
could also be used. For information about these instructions,
see the Assembly Language Programmer's Guide and the
Instruction Sets Guide.

PMA: BSS 2 pseudo-operation
FTN or F77: INTEGER*4
PL/I: FIXED BIN(31)

The FTN and F77 data type INTEGER*4 and the PL/I data type
BIN(31) are defined in PMA with the BSS 2 pseudo-operation.

FIXED

For example, the subroutine RNUM$A expects four arguments of the
types INTEGER*2, INTEGER*2, INTEGER*2, and INTEGER*4. A PMA
program that calls RNUM$A must declare data types that correspond
to those expected by the subroutine.

The following PMA statements declare the data types of the last two
arguments of RNUM$A:

A$BIN
ITEM

DATA 9
BSS 2

INTEGER*2 ARGUMENT
INTEGER*4 ARGUMENT

The first two arguments can be specified as literals in the call to
RNUM$A, as follows:

STRT CALL RNUM$A CALL SUBROUTINE TO ACCEPT NUMBER
AP =C'ENTER A NUMBER',S
AP =14,S MESSAGE LENGTH
AP A$BIN,S SYSCOM>A$KEY FOR BINARY
AP ITEM,SL RETURNED VALUE

Note

Although BSS 2 is ordinarily used in PMA to declare an
INTEGER*4 parameter, it is also possible to use the DYNM x
(2) or DATA xxxxL instructions. For information about
these instructions, see the Assembly Language Programmer's
Guide.

Second Edition 9-4

CALLING SUBROUTINES FROM PMA

PMA: Declared using DEC statement
FTN: LOGICAL
F77: LOGICAL*2

The PMA DEC statement can be used to declare the FTN data type LOGICAL
and the F77 data type LOGICAL*2. Both LOGICAL and LOGICAL*2 specify a
16-bit integer, with a value of 1 for true or 0 for false.

For example, the following PMA statement declares the variable L as a
16-bit halfword and initializes the variable to 0:

L DEC 0

For another example of how to declare a LOGICAL parameter in PMA, see
the section above that describes how to declare INTEGER*2 parameters.

PMA: BSS 2 pseudo-operation
FTN or F77: REAL*4 or REAL
PL/I: FLOAT BIN(23) or FLOAT BIN

The FTN and F77 data types REAL and REAL*4, and the PL/I data type
FLOAT BIN(23) or FLOAT BIN, can be declared in PMA with the BSS 2
pseudo-operation.

For example, the function DTIM$A expects an INTEGER*4 argument and the
function's value is received by a variable that must be REAL*4 or
REAL*8. The following statements declare these data types for the two
var iab les :

DSKTIM BSS 2 INTEGER*4 ARGUMENT
RTVAL BSS 2 REAL*4 ARGUMENT

Note

Although BSS 2 is ordinarily used in PMA to declare a
REAL*4 parameter, it is also possible to use the DATA
pseudo-operation to define the parameter as a data item
with a decimal point or scientific notation (nnEnn). For
information about these instructions, see the Assembly
Language Programmer's Guide.

9 - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

PMA: BSS 4 pseudo-operation
FTN and F77: REAL*8
PL/I: FLOAT BIN(47)

The FTN and F77 data type REAL*8 and the PL/I data type FLOAT BIN(47)
can be declared in PMA with the BSS 4 pseudo-operation.

For example, the function CTIM$A expects an argument of the data type
INTEGER*4 and its value is received by a variable of the data type
REAL*8:

CPUTIM BSS 2 INTEGER*4 ARGUMENT
RTVAL BSS 4 REAL*8 ARGUMENT

Note

Although BSS 4 is ordinarily used in PMA to declare a
REAL*8 parameter, i t is also possible to use the
pseudo-operator DATA to declare the parameter as a data
item with a decimal point or scientific notation and with
(nnDnn) appended to it. For information about these
instructions, see the Assembly Language Programmer's Guide.

PMA: Quad precision nnQnn format
F77: REAL*16

The PL/I data type REAL*16 is a quad precision floating-point number,
implemented as a 128-bit value. It corresponds to the PMA format
nnQnn, but can be passed to and from F77 only as a REAL*16 number. For
details, see the Assembly Language Programmer's Guide.

PMA: Alphabetic or Integer Array
FTN or F77: Integer Array

An integer array in FTN or F77 can contain either alphabetic or numeric
data. This may be passed as any data type.

For example, the subroutine TIMDAT expects two arguments, as indicated
by the following DCL statement:

DCL TIMDAT (1..., FIXED BIN)

The first argument is an array to which TIMDAT is to return system and
user information, in alphabetic and numeric form. The second argument
is an integer value which must be set to 28. The first statement below
declares the data type of variable string. TIMDAT writes system and

S e c o n d E d i t i o n 9 - 6

CALLING SUBROUTINES FROM PMA

user information into string. The second statement assigns num the
value 28.

STRING BSS 28
NUM EQU 28

The following statements call TIMDAT with the arguments defined above

CALL TIMDAT
AP STRING,S
AP NUM,SL

PMA: C-string or BCI-string
FTN or F77: ASCII character string

ASCII characters can be passed to a FORTRAN subroutine as a constant
string after the DATA statement. The string can be preceded by =C and
enclosed in single quotation marks; for example, DATA =C'STEP 1'. The
string can also be used in a BCI statement and enclosed by any
delimiter. The maximum number of characters after C is 32. After BCI,
you can use as many characters as fit on the same statement line.

For example, the subroutine SRCH$$ expects to receive arguments of the
data types indicated by the following DCL statement:

DCL SRCH$$ ENTRY (FIXED BIN, CHAR(32) VAR, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

In the DCL statement, the CHAR(32) VAR parameter is an ASCII character
string to be passed to SRCH$$.

The following statements call subroutine TNOUA to display the message
CODE; the first AP statement defines the text of the string, and the
second AP statement specifies the number of characters in the string:

MAIN CALL TNOUA
AP =C'CODE ',S
AP =5,SL

The following statement inserts the SYSCOM>KEYS.INS.PMA file into
program SRCH:

9 - 7 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

$INSERT SYSCOM>KEYS.INS.PMA

The following statements call subroutine SRCH$$ to verify
exists in the UFD to which the user is attached:

that CTRLFL

CALL SRCH$$
AP =K$EXST+K$IUFD,S
AP =C CTRLFL',S
AP = 6,S
AP =0,S
AP =0,S
AP CODE,SL

The code that calls subroutine SRCH$$ uses the following statement to
define the ASCII character string that gives the filename.

AP =C CTRLFL',S

PMA: Record structure
PL/I: CHARACTER(*)VARYING

The PL/I data type CHARACTER (*) VARYING is implemented as a record
structure containing a count of characters followed by the characters
themselves. The record structure can be pictured as follows:

05

Count Character String

Figure 9-1
CHAR(*) VAR Record Structure

For example, a PMA program that calls subroutine GV$GET must declare
data types that correspond to the types declared in the subroutine's
DCL statement, as follows:

DCL GV$GET ENTRY (CHAR(*)VAR, CHAR(*) VAR,
FIXED BIN, FIXED BIN);

Second Edition 9-8

CALLING SUBROUTINES FROM PMA

The following PMA statement
specified by an AP statement.

calls GV$GET with four arguments, each

MAIN CALL GV$GET
AP NAME,S
AP VAL,S
AP SIZE,S
AP

CHAR*VAR ARGUMENT
CHAR*VAR RETURN ARGUMENT
ONE-WORD ARGUMENT

CODE,SL ONE-WORD RETURN ARGUMENT

The following PMA statements declare data types for the arguments
s p e c i fi e d i n t h e C A L L s t a t e m e n t a b o v e . N o t e h o w t h e
CHARACTER(*)VARYING arguments are defined as structures consisting of
one-word integers followed by character strings.

NAME DATA
BCI

VAL DATA
BSS

SIZE DATA
CODE BSS

ONE-WORD INTEGER +
.MAX' FOUR-CHAR NAME

ONE-WORD INTEGER(SUPPLIED) +
FOUR-CHARACTERS RETURNED
16-BIT INTEGER

16-BIT INTEGER

PMA: DATA C'xxx, or l i te ra l
F77: CHARACTERS
PL/I: CHARACTER(n)NONVARYING

The PL/I data type CHARACTER(n)NONVARYING, usually declared as
CHARACTER(n), and the F77 data type CHARACTERS both consist of n
characters. These data types can be declared in PMA as DATA C'xxx...',
or passed as literals. Either item should be n characters long.

PMA: 16-bit integer
PL/I: BIT(l) ALIGNED

PL/I programs that expect arguments of this type should not be called
from PMA unless the argument is declared in PL/I as BIT(l) ALIGNED. If
the argument is declared as BIT(l) ALIGNED, it can be treated as a
16-bit integer, with a value of -1 for false.

9-9 Second Edition

APPENDICES

FORTRAN
Internal Subroutines

INTERNAL SUBROUTINES

The following subroutines are used internally by the FORTRAN compiler.
They may be of some value to the PMA user and are briefly described.
For calling sequence and further information, refer to the compiler or
library source listings.

Table A-1
Subroutines Internal to FORTRAN

Subroutine Function

F$A1 Input/output 16-bit integer.

F$A2 Input/output single-precision float ing-point.

F$A3 Input/output logical.

F$A5 Input/output complex.

A - 1 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Table A-1 (continued)
Subroutines Internal to FORTRAN

Subroutine Function

F$A6 Input/output double-precision floating-point.

F$A7 Input/output long integer.

F$AT FORTRAN R-mode argument transfer subroutine.

F$ATI FORTRAN argument transfer subroutine for
PROTECTED subroutine.

F$BKSP Backspace statement processor.

F$BN Rewind logical device specified.

F$CB End of READ/WRITE statement.

F$CG FORTRAN computed GOTO processor.

F$CLOS Close statement processor.

F$DE Decode statement processor.

F$DEX Decode statement processor with ERR=.

F$DN Close (END-FILE) logical device specified.

F$EN Encode statement processor.

F$END Endfile statement processor.

F$FN Provide backspace function to FORTRAN runtime
programs.

F$IBR Initialize unformatted read.

F$IBW Initialize unformatted write.

F$IFR Initialize formatted read.

F$IFW Initialize formatted write.

F$ILDR Init ial ize l ist-directed read.

F$ILDW Ini t ia l ize l is t -d i rected wr i te.

F$INQF Inquire by file statement processor.

Second Edition A-2

FORTRAN INTERNAL SUBROUTINES

Table A-1 (continued)
Subroutines Internal to FORTRAN

Subroutine Function

F$INQU Inquire by unit statement processor

F$INR Initialize namelist read.

F$I077 Read and write variable-length records in
default case of F$IO.

F$IOBF F$IO buffer definition (up to 128 halfwords,
for R mode and nonshared V mode; up to 16K-1
halfwords in shared V-mode library)

F$IOFTN Read and write records in manner
with F$IO.

compatible

F$OPEN Open statement processor.

F$PAUS Pause statement processor.

F$RA Read ASCII, no alternate returns.

F$RAX Read ASCII, with ERR= and END=
returns.

a l te rna te

F$RB Read BINARY, no alternate returns.

F$RBX Read BINARY with ERR= and END=
returns.

a l te rna te

F$REW Rewind statement processor.

F$RN Read with no alternate returns.

F$RNX Read with ERR= and END= alternate returns.

F$RTE FORTRAN RETURN statement processor.

F$RX COMMON read handler.

F$STOP Stop statement processor.

F$TR Perform the function of the FORTRAN TRACE
rout ine .

F$WA Write ASCII, no alternate returns.

A-3 Second Edition

SUBROUTINES, VOLUME I

Table A-1 (continued)
Subroutines Internal to FORTRAN

Subroutine Function

F$WAX Write ASCII with ERR= and END=
returns.

a l te rna te

F$WB Write BINARY, no alternate returns.

F$WBX Write BINARY, with ERR= and END=
returns.

a l te rna te

F$WN Write with no alternate returns.

F$WNX Write with ERR= alternate return.

F$WX COMMON write handler.

INTRINSIC FUNCTIONS

The following subroutines are the FORTRAN
function handlers:

l i b r a r y i n t r i n s i c

Subroutine Function

F$LS Left shift

F$LT Left truncate

F$OR Inclusive OR

F$RS Right shift

F$RT Right truncate

F$SH General shift

Second Edition A-4

FORTRAN INTERNAL SUBROUTINES

FLOATING-POINT EXCEPTIONS

The FLEX (or F$FLEX) subroutine is invoked by the compiler or
sys tem. Th is subrou t ine i s the floa t ing-po in t except ion- in te r rup t
processor. It determines the exception type, and returns a message
as follows:

DE Exponent underflow, s tore except ion

DZ D iv i de by 0

R I R e a l - i n t e g e r e x c e p t i o n

S E E x p o n e n t o v e r fl o w

For fur ther in format ion on float ing-point except ion (FLEX), refer
to the System Architecture Reference Guide.

A - 5 S e c o n d E d i t i o n

Arithmetic Routines
Callable From PMA

INTRODUCTION

Calls to the routines that perform mathematical calculations are
generated by the FORTRAN compiler when arithmetic operations are
specified in a FORTRAN program. They should not be called explicitly
by a FORTRAN program, but may be called in a PMA program.

All of these subroutines are callable in 32R mode or 64R mode and are
contained in FTNLIB. The subset of the subroutines that are necessary
in 64V mode are in PFTNLB.

FORMAT AND ARGUMENTS

Subroutine names are of the form p$xy or F$pxy. £ is a prefix; x is
the first argument (argument-1) ; y_ is the second argument
(argument-2) .

The prefix specifies the action of the subroutine. (See Table B-l.)
argument-1 is a number specifying the register in which the first
argument is stored. (See Table B-2.) argument-2 is a number
specifying the type of the second argument pointed to by a DAC (R mode)
or AP (V mode) following the subroutine call. (See Table B-2.)

B - l S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Table B-l
Subroutine Prefix Explanations

P r e fi x M e a n i n g N u m b e r of Arguments

A Addi t ion
C Conversion
D Div is ion
E Exponentiation
H Store complex number
L Load complex number
M M u l t i p l i c a t i o n
N Negation
S Subtract ion
Z Zero double-precision exponent

FORTRAN Support Subroutines (F$)

DI Positive difference
MA Maximum
MI Minimum
MO Remainder (modulus)
SI Magnitude of first times sign of second

S e c o n d E d i t i o n B - 2

ARITHMETIC ROUTINES CALLABLE FROM PMA

Table B-2
Data Type Codes

Type
Code R e g i s t e r Type

1 A 16-bit integer (INTEGER*2)
2 FAC Sing le -p rec is ion floa t ing-po in t number

(REAL or REAL*4)
5 AC1-AC4 Complex number (COMPLEX)
6 DFAC Double-prec is ion float ing-po in t number

(DOUBLE PRECISION or REAL*8)
7 A+B Long integer (INTEGER*4)
8 Exponent part of a double-precision number

Keys

A A register
FAC Floa t ing-po in t accumula to r
AC1-AC4 Complex accumulator addresses AC1 to AC4
DFAC Doub le -p rec is ion floa t ing -po in t accumula to r
A+B Concatenated A and B registers

Note

Some long-integer subroutines may need to be entered or
exited in DBL mode (R mode only); this is noted with
the description of these subroutines.

B-3 Second Edition

SUBROUTINES, VOLUME I

Note

In subroutines with only one argument, argument-2 has a
slightly different meaning. This is discussed under the
specific subroutines.

The following are examples of formats

A$22 Adds two s ing le -prec is ion float ing-po in t numbers
(two arguments).

C $ 1 2 F l o a t s a 1 6 - b i t i n t e g e r t o a s i n g l e - p r e c i s i o n
floating-point number (one argument).

A complete list of subroutines of this type follows. In the rest of
this appendix, the discussion is divided into subroutines with one
argument and subroutines with two arguments.

A$21 C$26 D$51 E$27 F$DI11 F$SI11 M$77
A$51 C$27 D$52 E$51 F$DI71 F$SI71
A$52 C$51 D$55 E$52 F$DI77 F$SI77 N$55
A$55 C$52 D$57 E$55 N$77
A$61 C$57 D$61 E$57 F$MA11 H$55
A$62 C$61 D$62 E$61 F$MA22 S$21
A$77 C$62 D$67 E$62 F$MA77 L$55 S$51

C$67 D$71 E$66 S$52
C$12 C$75 D$77 E$67 F$MI11 M$21 S$55
C$15 C$76 E$71 F$MI22 M$51 S$61
C$16 C$77 E $ l l E$77 F$MI77 M$52 S$62
C$21 E$21 M$55 S$77
C$21G D$21 E$22 F$CL F$M071 M$61
C$25 D$27 E$26 F$M077 M$62 Z$80

S e c o n d E d i t i o n B - 4

ARITHMETIC ROUTINES CALLABLE FROM PMA

SINGLE-ARGUMENT SUBROUTINES

Each of these subroutines takes a single argument stored in the
appropriate register, operates on it, and stores the result in the same
or another register.

Conversion

C$xy

Converts the type of the argument in the register identified by x to
the type of the argument identified by y_ and stores it in the proper
register for y_-type variables. For example, C$75 converts a long
integer in the A+B register into the real part of a complex number in
the complex accumulator (imaginary part is 0). See Table B-3 for a
complete list.

Complex Number Manipulation

H$55

Stores the contents of the complex accumulator (AC1 to AC4) at the
address specified by the DAC or AP following the call.

L$55

Loads the complex accumulator (AC1 to AC4) from the four halfwords
pointed to by the DAC or AP following the call.

Negation

N$xx

Negates the value of the argument in the register specified by x, and
stores it in that same register. (See Table B-3.)

Zeroing

Z$80

Clears the exponent part of the double-precision floating-point
accumulator (DFAC). This is for R mode only.

B - 5 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Table B-3

Single-argument Subroutines
(Negation and Conversion)

N$ (Negation) C$ (Conversion)

n / a
R
R,V
R
R (2)
n / a
R,V
R
R
R,V
R,V
n / a
R,V
R
R
n / a
R,V

R
R,V
R

Keys

n / a N o t a p p l i c a b l e
R Used in R mode only
R, V Used in R mode or V mode
x Argument type (See Table B-2.)
y R e s u l t t y p e (S e e Ta b l e B - 2 .)

1 1
1 2 n/a
1 5 n/a
1 6 n/a
2 1 n/a
2 2
2 5 n/a
2 6 n/a
2 7 n/a
5 1 n/a
5 2 n/a
5 5 R,V
5 7 n/a
6 1 n/a
6 2 n/a
6 6
6 7 n/a
7 2 n/a
7 5 n/a
7 6 n/a
7 7 R (1)

Notes

Exit mode is DBL (R mode).

There is also a subroutine C$21G (R mode only), which
performs the same functions as C$21 without the use of any
fl o a t i n g - p o i n t i n s t r u c t i o n s .

Second Edition B-6

ARITHMETIC ROUTINES CALLABLE FROM PMA

TWO-ARGUMENT SUBROUTINES

These subroutines perform arithmetic operations (addit ion, subtraction,
and so on.) on two arguments. If the arguments do not have the same
data type, the data type of the result is that of the higher. The data
types, in descending order are:

COMPLEX or DOUBLE PRECISION
REAL
LONG INTEGER (INTEGER*4)
16-BIT INTEGER (INTEGER*2)

There are no operations that combine COMPLEX and DOUBLE PRECISION
numbers (no "56" or "65" subroutines). The result of a two-argument
subroutine is stored in the appropriate register for i ts data type.
(See Table B-2.) For example:

R mode

CALL A$21
DAC I

floats the 16-bit integer I and adds it to the contents of the Floating
Point Accumulator (FAC).

V mode

CALL F$MI11
AP 12,SL

loads 12 into the A register if 12 is less than the current contents of
the A register.

A d d i t i o n

A$xy

Adds argument of type y_, pointed to by the DAC or AP following the
call, to an argument of type x in the appropriate register. See Table
B-4 for a complete list.

B - 7 S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

D i v i s i o n

D$xy

Divides the argument of type x in the appropriate register by the
argument of type y_' pointed to by the DAC or AP following the call.
See Table B-4 for a complete list.

Exponen t i a t i on

E$xy

Raises the argument of type x in the appropriate register to the power
specified by the argument of type _f_ pointed to by the DAC or AP
following the call. A complete list is given in Table B-4.

Note

In all modes, zero to the zero power is one.

M u l t i p l i c a t i o n

M$xy

Multiplies the argument of type x in the appropriate register by the
argument of type _r pointed to by the DAC or AP following the call. See
Table B-4 for a complete list.

S u b t r a c t i o n

S$xy

Subtracts the argument of type y_, pointed to by a DAC or AP following
the call, from an argument of type x in the appropriate register. See
Table B-4 for a complete list.

Pos i t i ve D i f fe rence

F$Dlxy

Subtracts the argument of type y_, pointed to by the DAC or AP following
the call, from the argument of type x in the appropriate register. If
the result is less than 0, the register is cleared. See Table B-5 for
a complete list.

S e c o n d E d i t i o n B - !

ARITHMETIC ROUTINES CALLABLE FROM PMA

Maximum

F$MAxx

Places the maximum of the register, specified by type x, and the value
of the argument of type x, pointed to by the DAC or AP, into the
specified register. See Table B-5 for a complete list.

Table B-4

Two-argument
Arithmetic Subroutines (First Group)

A$ s$ M$ D$ E$
X y A d d i t i o n Subtract i o n M u l t i p l i c a t i o n D i v i s i o n Exponent iat ion

1 1 R,V
2 1 R R R R,V R,V
2 2 R,V
2 6 R,V
2 7 R,V R,V
5 1 R,V R,V R,V R,V R,V
5 2 R,V R,V R,V R,V R,V
5 5 R,V R,V R,V R,V R,V
5 7 R,V R,V
6 1 R R R R,V R,V
6 2 R R R R,V R,V
6 6 R,V
6 7 R,V R,v
7 1 R,V R,V
7 7 RU)

R
R,V

R U)

Used
Used

RU)

Keys

in R mode only
in R mode or V mode

R U) R,V(1)

X F i r s t argument, sto red in app rop r i a te r e g i s t e r
y Second argument, po Lnted to by DAC (R mode)

or AP (V mode)

Note

Exit mode is DBL (R mode).

B-9 Second Edition

SUBROUTINES, VOLUME I

Minimum

F$Mlxx

Places the minimum of the register specified by type x and the value of
the argument of type x, pointed to by the DAC or AP, into the specified
register. See Table B-5 for a complete list.

Remainder

F$MOxy

Divides an argument of type x in the appropriate register by an
argument of type y_, pointed to by the DAC or AP. The remainder is
placed in the appropriate register. See Table B-5 for a complete list.

Sign and Magnitude

F$Slxy

Multiplies the argument of type x in the appropriate register by the
sign of the argument of type y_ pointed to by the DAC or AP and stores
the result in the register for type x. See Table B-5 for a complete
l i s t .

Comparison (R mode Only)

F$CL

Compares the long integer Ll in the concatenated A and B registers with
the long integer L2, pointed to by a DAC following the call. Control
passes as follows:

L 1 > L 2 N e x t l o c a t i o n
L 1 = L 2 S k i p o n e l o c a t i o n
L K L 2 S k i p t w o l o c a t i o n s

The A and B registers are not modified. For example

CALL F$CL
DAC L2
...return here if Ll>L2
...return here if L1=L2
...return here if LKL2

S e c o n d E d i t i o n B - 1 0

ARITHMETIC ROUTINES CALLABLE FROM PMA

Table B-5

Two-argument
Arithmetic Subroutines (Second Group)

F $ S I F $ D I
F$MO S i g n a n d P o s i t i v e F $ M A F$MI

x y Remainder Magn i tude D i f fe rence Max imum Minimum

1 1 R , V R , V R , V R,V
2 2 R,V R,V
7 1 R,V R , V R , V
7 7 R,V R , V R , V R , V

Keys

R,v

R Used in R mode only
R, V Used in R mode or V mode
X First a rgument, stored in appropriate register
y Second argument, pointed to by DAC (R mode)

or AP (V mode)

B - l l Second Edition

Data Type Equivalents

To call a subroutine from a program written in any Prime language, you
must declare the subroutine and its parameters in the calling program.
Therefore, you must translate the PL/I data types expected by the
subroutine into the equivalent data types in the language of the
calling program.

The table that follows shows the equivalent data types for the Prime
languages BASIC/VM, C, COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, and
PL/I. The leftmost column lists the generic storage unit, which is
measured in bits, bytes, or halfwords for each data type. Each storage
unit matches the data types listed to the right on the same row. The
table does not include an equivalent data type for each generic unit in
all languages. However, with knowledge of the corresponding machine
representation, you can often determine a suitable workaround. For
instance, to see if you can use a left-aligned bit in COBOL 74, you
could write a program to test the sign of the 16-bit field declared as
COMP. In addition, if a subroutine parameter consists of a structure
with elements declared as BIT(n), it can be declared as an integer in
the calling program.

For more information on matching data types for a particular language,
see the chapter on that language in this volume. The data type tables
in these chapters may suggest additional ways of declaring the data
types expected by subroutines or functions.

Note

The term PL/I refers both to full PL/I and to PL/I Subset G
(PL/I-G).

C - l S e c o n d E d i t i o n

SUBROUTINES, VOLUME I

Table C-l
Data Type Equivalents

5
CL

FIXED BIN FIXED
BIN(15) LU 2

X CQ
LL FLOAT

BIN
FLOAT

BIN(23) _ m
L L 00 00

LUz— 0
c—1t- <
00

15o
(A8.

■o
£5 _o g
U J t

£1

rr
LU
O
LU
1-z
Oz
2

_ i<
LU
CC

_ J<
LU
OC
Oz
2

LU
_ l

CO

z<

g
LL

CM CVJ

CC lluu <
O O

CC CC _i _i
LU LU < <o o o O
L U U J ^ ^£S22

_ i _ j< <
LU LUcr cc

co
L i<
LU
DC

CD

_ J<
LU
CC

z<

g
L L

C\J

CC DC -J
LU LU <o o o
LU LU Tn•- •- S

DC
LUo
LU
h -
Z

2*_J 1j< <
UJ LU
DC DC

C O

_ J<
LU
DC

- J

o

i - C T)

a. oTW3= CO O
O O C L
O 0_

j^ c tT
LO CT)

^ w o0 ° Q-
O CL

^ co"o C-■>- CT)
n CT) W

S O I
O 0-

C\l
oL
O
0

o

c5
. 2

CD

3
O
■ D

z
is° %
2<_

CO i -z
— J<
LU
DC

CO

<
LUcc

co -p

O

0)
C

lo
CD

0)
O)

_
15
C\l
CO

co

c

■94
C D

* w

j_ £:£ a
.t; co
-9 s>cm .£
CO w

' w
_, '0"ro 2
.2 a
^Z CO
15 -^
"<t 0
CD TJ

co ;«
if CD

-9 -0
CO COcm a
1 - c r

._■
J 3

._
X l
■ 0
CD
C

.CO
"03
i l -
_ 0

Second Edition C-2

DATA TYPE EQUIVALENTS

Table C-l (continued)
Data Type Equivalents

3
CL

c?
h-
00

CC<
X
O

LU
OC

o
CL

_ l<
Q O
LU LU
X Q
LL

- . z
DC DC

O POINTER
OPTIONS (SHORT)

OC
LU
h -z
2

u
V)s.

LU
CO

J DC

O CL

c?
Oz
DC
Hco

z<

g ^

DC
U J
l -
O<
CC

o

z<

g
LL

1=o _5 ssccb_<xLu
W O O j
Q Cl Cl li

Cl o^
CO o
Q C l

CO
Q l

O

o •o
CDc
cn ^_

' (f) cc —
3

ce
o

l l
ro rox: xo o

CO
T 3
O- E

C O '

'5 ^cl S2.

"co"
TD
O

co e
c >
23

z
is

CO 1 -z

co 3

bo

to ro
ffi ro

;- -cLL O

x :
1? C?
_o •=
- _ W
CD .ti
X D)
LL TD

CD

XJ w "5,
CO ts .5?
X C O - ?

LL T3 CM

X c?

C D - .— C D

.?«I1> o

CX

I d
cm
CO

"a
15
CO

"w
Cc 5s D.

cl•c
c/5<u•o " V C/5
-1
oo <U OQ
C3 ^ j__ s;

O <_ . 0)
s; rt
3

a <n
c/5

C<! f -

2 s o
>* CQa nE C lrt ooo x :a> •5oeort

3
6 0

c C rto
C/0

rt
T 3

C/5- ac

rt•c
O

3
Ou .

C l
Curt

wo

c a >>
j _
o rt
£ o rt

' < A fe
Sl &0

V5

O S
0-eo

" « 5
C/0
3

C/3

a
oo

T 3rt •co
i2 CO

(90
<4-Ho OQ

o

C-3 Second Edition

INDEXES

Index of
Subroutines

by Name

A$xy series
ABSW

AC$CAT

AC$CHG
AC$DFT

AC$LIK

AC$LST
AC$RVT

AC$SET
ALC$RA

ALOC$S
ALS$RA

APSFX$
ASCS$$

ASCS$$

ASCSRT
ASNLN$
ASSUR$

AT$

FORTRAN compiler addition functions.
Return cold-start setting of ABBREV

s w i t c h .
Add an object's name to an access

c a t e g o r y.
Modify an existing ACL on an object.
Set an object's ACL to that of its

pa ren t d i r ec to r y.
Set an object's ACL like that of another

o b j e c t .
Obtain the contents of an object's ACL.
Convert an object from ACL protection

to password protection.
Set a specific ACL on an object.
Allocate space for EPF function return

i n f o r m a t i o n .
Allocate memory on the current stack.
Allocate space and set value of EPF

f u n c t i o n .
Append a specified suffix to a pathname.
Sort or merge sorted files (multiple

file types and key types).(V mode)
Sort or merge sorted files (multiple

file types and key types).(R mode)
Synonym for ASCS$$. See above.
Assign AMLC line.
Check process has given amount of

t i m e s l i c e l e f t .
Set the attach point to a directory

specified by pathname.

I I I

I I

I I
I I

I I

I V

I V
I I I

I I

B-7
2-3

2-3

2-5
2-7

2-9

I I 2-11
I I 2-13

I I 2-15
I ' l l 4-16

I I I 4-3
I I I 4-21

I I 4-4
IV 17-12

17-42

8-21
2-22

3-3

SX-1 Second Edition

SUBROUTINES, VOLUME I

AT$ABS

AT$ANY

AT$HOM

AT$LDEV

AT$OR

AT$REL

ATCH$$

ATTDEV

Set the attach point to a specified
top-level directory and partition.

Set the attach point to a specified
top-level directory on any partition,

Set the attach point to the home
d i rec to r y.

Set the attach point by top-level
directory and logical disk number.

Set the attach point to the login
d i r ec to r y.

Set the attach point relative to the
current directory.

Set the attach point to a specified
d i r ec to r y.

Change a device assignment temporarily,

I I 3 -6

I I 3-8

I I 3-10

I I 3-11

I I 3-13

I I 3-15

I I A-2

I V 3-6

BIN$SR
BNSRCH
BREAK$
BUBBLE

Perform binary search in ordered table
Binary search.
Inhibit or enable BREAK function.
Bubble sort.

I l l 6-21
I V 17-48
I I I 3-50
I V 17-50

C$xy series
C$A01
C$M05
C$M10
C$M11

C$M13

C$P02
C1IN
C1IN$
C1NE$
CALAC$

CASE$A
CAT$DL
CE$BRD

CE$DPT

CH$FX1

CH$FX2

CH$HX2

CH$MOD
CH$OC2

FORTRAN compiler conversion functions.
Control functions for user terminal.
Control functions for 9-track tape.
Control functions for 7-track tape.
Control functions for 7-track tape

(BCD).
Control functions for 9-track tape

(EBCDIC).
Control functions for paper tape.
Read a character.
Read a character.
Read a character, suppressing echo.
Determine whether an object is acces

sible for a given action.
Convert between upper- and lowercase.
Delete an access category.
Return caller's maximum command

environment breadth.
Return caller's maximum command

environment depth.
Convert string (decimal) to 16-bit

i n teger.
Convert string (decimal) to 32-bit

i n teger.
Convert string (hexadecimal) to 32-bit

i n teger.
Change the open mode of an open file.
Convert string (octal) to 32-bit

i n teger.

B-5
I V 6-5
I V E-5
I V E-5
I V E-5

IV E-5

I V 6-12
I I I 3 -5
I I I 3-7
I I I 3 -9
I I 2-17

I V 14-2
I I 2-19
I I 6 -3

I I 6 -4

I I I 6-3

I I I 6-5

I I I 6-7

I I 4-6
I I I 6-9

Second Edition SX-2

INDEX BY NAME

CHG$PW
CKDYN$

CL$FNR

CL$GET
CL$PIX

CLINEQ
CLNU$S
CLO$FN
CLO$FU

CLOS$A
CMADD
CMADJ
CMBN$S
CMCOF
CMCON
CMDET
CMDL$A
CMIDN
CMINV
CMLV$E
CMMLT
CMSCL
CMSUB
CMTRN
CNAM$$

CNIN$
CNSIG$
CNVA$A
CNVB$A
CO$GET

COM$AB

COMANL
COMB
COMI$$

COMLV$
COMO$$

CONTRL

CP$
CPUID$
CREA$$

CREPW$
CSTR$A
CSUB$A

Change login validation password.
Determine if routine is dynamically

a c c e s s i b l e .
Close a file by name and return a bit

s t r ing indicat ing c losed uni ts .
Read a line.
Parse command line according to a

command line picture.
Solve linear equations (complex).
Close all sort units after SRTF$.
Close a file system object by pathname.
Close a file system object by file unit

number.
Close a file.
Matr ix addi t ion (complex).
Calculate adjoint matrix (complex).
Sort tables prepared by SETU$.
Calculate signed cofactor (complex).
Set constant matrix (complex).
Calculate matrix determinant (complex).
Parse a command line.
Set matrix to identity matrix (complex).
Calculate signed cofactor (complex).
Call new command level after an error.
Mat r ix mu l t ip l i ca t ion (complex) .
Multiply matrix by scalar (complex).
Matr ix subtract ion (complex).
Calculate transpose matrix (complex).
Change the name of an object in the

c u r r e n t d i r e c t o r y.
Read a specified number of characters.
Continue scan for on-units.
Convert ASCII number to binary.
Convert binary number to ASCII.
Return information about command

outpu t se t t ings .
Expand a line using Abbreviations

p rep rocesso r.
Read a line into a PRIMOS buffer.
Generate matrix combinations.
Switch input between the terminal and a

fi l e .
Call a new command level.
Switch output between the terminal and a

fi l e .
Perform device-independent control

f u n c t i o n s .
Invoke a command from a running program.
Return model number of Prime computer.
Create a new subdirectory in the current

d i r e c t o r y .
Create a new password directory.
Compare two strings for equality.
Compare two substrings for equality.

I l l
I I I

I I

2-23
2-4

4-7

I I I 3-10
I I 6-5

I V 18-7
I V 17-29
I I 4-9
I I 4-10

I V 15-2
I V 18-9
I V 18-11
I V 17-27
I V 18-13
I V 18-16
I V 18-18
I V 16-2
I V 18-20
I V 18-22
I I I 5 -5
I V 18-24
I V 18-26
I V 18-28
I V 18-30
I I 4-11

I I I 3-13
I I I 7-19
I V 14-4
I V 14-6
I I I 3-52

I I I 2 - 2 5

I I I 3-15
I V 18-5
I I I 3-53

I I I 5 -6
I I I 3-55

I V 4-11

I I 6 -9
I I I 2-5
I I A-5

I I A-7
I V 10-2
I V 10-4

SX-3 Second Edition

SUBROUTINES, VOLUME I

CTIM$A
CV$DQS
CV$DTB
CV$FDA
CV$FDV
CV$QSD

Return CPU time since login.
Convert binary date to quadseconds.
Convert ASCII date to binary format.
Convert binary date to ISO format.
Convert binary date to "visual" format
Convert quadsecond date to binary

format.

I V 12-2
I I I 6-12
I I I 6-13
I I I 6-15
I I I 6-17
I I I 6-19

D$xy series FORTRAN compiler division functions.
D $ I N I T I n i t i a l i z e d i s k .
DATE$ Return current date and time.
DATE$A Return today's date, American style.
D E L E $ A D e l e t e a fi l e .
DIR$CR Create a new directory.
DIR$LS Search for specified types of entries

in a directory open on a file unit.
DIR$RD Read sequentially the entries of a

directory open on a file unit.
DIR$SE Return directory entries meeting caller-

specified selection criteria.
DISPLY Update sense l ight sett ings.
DKGEO$ Register disk format with driver.
DLINEQ Solve a system of linear equations

(double precision).
DMADD Matr ix addi t ions (double precis ion).
DMADJ Calculate adjoint matr ix (double

prec is ion) .
DMCOF Calculate signed cofactor (double

prec is ion) .
DMCON Set matrix to constant matrix (double

prec is ion) .
DMDET Calculate determinant (double

prec is ion) .
DMIDN Set matrix to identity matrix (double

prec is ion) .
DMINV Calculate inver ted matr ix (double

prec is ion) .
D M M LT M a t r i x m u l t i p l i c a t i o n (d o u b l e

prec is ion) .
DMSCL Multiply matrix by a scalar (double

p rec i s ion) .
DMSUB Matr ix subtract ion (double precis ion) .
DMTRN Calculate transpose matrix (double

p rec i s ion) .
DOFY$A Return today's date as day of year

(Ju l ian) .
DS$AVL Return data about a disk partition.
DS$ENV Return data about a process's

environment.
DS$UNI Return data about file units.
DTIM$A Return disk time since login.

B-8
I V 5-13
I I I 2 -8
I V 12-3
I V 15-3
I I 4-15
I I 4-17

I I 4-24

I I 4-29

I I I 10-3
I V 5-18
I V 18-7

I V 18-9
I V 18-11

I V 18-13

I V 18-16

I V 18-18

I V 18-20

I V 18-22

I V 18-24

I V 18-26

I V 18-28
I V 18-30

IV 12-4

I I I 2-51
I I I 2-53

I I I 2-57
I V 12-5

Second Edition SX-4

INDEX BY NAME

r

DUPLX$ Control the way PRIMOS treats the user
t e r m i n a l .

DY$SGS Return maximum number of dynamic
segments.

E$xy series FORTRAN compiler exponentiation
r o u t i n e s .

E D AT $ A To d a y ' s d a t e , E u r o p e a n (m i l i t a r y) s t y l e
ENCD$A Make a number pr in table i f possib le.
ENCRYPT$ Encrypt log in va l idat ion passwords.
ENT$RD Return the contents of a named entry

in a directory open on a file unit.
EPF$ALLC Perform the l inkage al locat ion phase

for an EPF.
EPF$CPF Return the state of the command

processing flags in an EPF.
EPF$DEL Deact iva te the most recent invocat ion

of a specified EPF.
E P F $ I N I T P e r f o r m t h e l i n k a g e i n i t i a l i z a t i o n

phase for an EPF.
EPF$INVK Initiate the execution of a program EPF
EPF$MAP Map the procedure images of an EPF file

into virtual memory.
EPF$RUN Combine functions of EPF$ALLC, EPF$MAP,

EPF$INIT, and EPF$INVK.
EQUAL$ Generate a filename based on another

name.
ERKL$$ Read or set the erase and ki l l

c h a r a c t e r s .
ERRPR$ Pr in t a s tandard er ror message.
ERRSET Set ERRVEC (a system error vector).
ERTXT$ Retu rn tex t assoc ia ted w i th e r ro r code .
E X $ C L R D i s a b l e s i g n a l l i n g o f E X I T $ c o n d i t i o n .
E X $ R D R e t u r n s t a t e o f E X I T $ s i g n a l l i n g .
E X $ S E T E n a b l e s i g n a l l i n g o f E X I T $ c o n d i t i o n .
E X I T R e t u r n t o P R I M O S .
E X S T $ A C h e c k f o r fi l e e x i s t e n c e .
EXTR$A Return an object 's entryname and parent

directory pathname.

I l l 3-57

I I I 4-25

I B-8

I V 12-6
I V 14-8
I I I 6-24
I I 4-37

I I 5 -3

I I 5 -5

I I 5 -7

I I 5 -9

I I 5 -11
I I 5-15

I I 5-19

I I 4-39

I I I 3-60

I I I 3-30
I I I 10-4
I I I 2 -9
I I I 7-35
I I I 7-36
I I I 7-37
I I I 5-7
I V 15-4
I I 4-41

F$xxyy series FORTRAN compiler floating-point
f u n c t i o n s .

FDAT$A Conver t the DATMOD field re turned by
RDEN$$ to DAY MON DD YYYY.

FEDT$A Conver t the DATMOD field returned by
RDEN$$ to DAY DD MON YYYY.

F IL$DL De le te a fi le i den t i fied by a pa thname
F I L L $ A F i l l a s t r i n g w i t h a c h a r a c t e r .
F I N F O $ R e t u r n i n f o r m a t i o n a b o u t a s p e c i fi e d

fi l e u n i t .
FNCHK$ Ver i fy a supp l ied s t r ing as a va l id

fi l e n a m e .

B-8

I V 14-10

I V 14-12

I I 4-43
I V 10-6
I I 4-45

I I 4-47

SX-5 Second Edition

SUBROUTINES, VOLUME I

FORCEW

FRE$RA

FSUB$A
FTIM$A

Force PRIMOS to write modified records II 4-49
to disk.

D e - a l l o c a t e s p a c e f o r E P F f u n c t i o n I I I 4 - 2 3
re turn in format ion .

Fill a substring with a given character. IV 10-7
Convert the TIMMOD field returned by IV 14-14

REDN$$.

G$METR
GCHAR
GCHR$A
GEND$A
GETERR
GETID$

GINFO
GPAS$$

GPATH$

GSNAM$
GT$PAR
GV$GET
GV$SET

Return system metering information.
Get a character from an array.
Get a character from a packed string.
Position to end of file.
Return ERRVEC contents.
Obtain the user-id and the groups to

which it belongs.
Return PRIMOS II information.
Obtain the passwords of a subdirectory

of the current directory.
Return the pathname of a specified

unit, attach point, or segment.
Return current PRIMOS system name.
Parse character string into tokens.
Retrieve the value of a global variable.
Set the value of a global variable.

I l l 2-63
I I I 6-25
I V 10-9
I V 15-5
I I I 10-6
I I 2-21

I I I 2-10
I I 2-23

I I

I I I
I I I
I I
I I

4-51

2-12
6-27
6-12
6-14

H$xy series FORTRAN compiler complex number storage. I B-5
H E A P H e a p s o r t . I V 1 7 - 5 1

I$AA01
I$AA12

I$AC03
I$AC0 9
I$AC15

I$AD07
I$AM05
I$AM10
I$AM11
I$AM13
I$AP02
I$BD07
I$BM05
I$BM10
ICE$
IDCHK$
IMADD
IMADJ

Read ASCII from terminal.
Read ASCII from terminal or input stream

by REDN$$.
Input from parallel card reader.
Input from serial card reader.
Read and print card from parallel card

reader.
Read ASCII from disk.
Read ASCII from 9-track tape.
Read ASCII from 7-track tape.
Read BCD from 7-track tape.
Read EBCDIC from 9-track tape.
Read paper tape (ASCII).
Read binary from disk.
Read binary from 9-track.
Read binary from 7-track.
Initialize the command environment.
Validate a name.
Matr ix add i t ion (in teger) .
Calculate adjoint matr ix (integer) .

I V 6-8
I V 6-10

I V 7-22
I V 7-24
I V 7-26

I V 5-4
I V E-7
I V E-7
I V E-7
I V E-7
I V 6-13
I V 5-8
I V E-7
I V E-7
I I I 5-8
I I I 2-27
I V 18-9
I V 18-11

Second Edition SX-6

INDEX BY NAME

IMCOF
IMCON
IMDET
IMIDN
IMMLT
IMSCL
IMSUB
IMTRN
IN$LO

INSERT
IOA$
IOA$ER

IOA$RS
IOCS$F
IOCS$G
ISACL$

ISREM$

Calculate s igned cofactor (integer) .
Set matrix to constant matrix (integer)
Calculate matr ix determinant (integer) .
Set matrix to identity matrix (integer)
M a t r i x m u l t i p l i c a t i o n (i n t e g e r) .
Mult iply matrix by scalar (integer).
Mat r i x sub t rac t ion (in teger) .
Calculate transpose matr ix (integer).
Determine if a forced logout is in

p r o g r e s s .
I nse r t i on so r t .
Provide free-format output.
Provide free-format output, for error

messages.
Perform free-format output to a buffer.
Free logical unit .
Get logical unit.
Determine whether an object is ACL-

p r o t e c t e d .
Determine whether an open file system

object is local or remote.

IV 18-13
IV 18-16
IV 18-18
IV 18-20
IV 18-24
IV 18-26
IV 18-28
IV 18-30
I I I 2-28

IV 17-52
I I I 3-32
I I I 3-38

I I I 6-32
I V 3-4
I V 3-2
I I 2-25

I I 4-54

JSTR$A L e f t - j u s t i f y, r i g h t - j u s t i f y, o r c e n t e r
a str ing.

I V 10-10

KLM$IF Enable a program to obtain serializa
tion data from a specified file.

I l l 5 - 8 a

L$xy series
LDISK$

LIMIT$
LINEQ

LIST$CMD

LOGO$$
LON$CN
LON$R
LOV$SW

LSTR$A
LSUB$A
LUDEV$

LUDSK$
LV$GET

FORTRAN compiler complex number loading,
Return information on the system's list

of logical disks.
Set and read various timers.
Solve a system of linear equations

(s ing le p rec i s i on) .
Return a list of commands valid at

mini-command level.
Log out a user.
Switch logout notification on or off.
Read logout not ificat ion informat ion.
Indicate i f the Login-over- login

funct ion is current ly permit ted.
Locate one string within another.
Locate one substring within another.
Return a list of devices that a user

can access.
List the disks a given user is using.
Retrieve the value of a CPL local

v a r i a b l e .

B-5
I I 4-56

I I I 8-36
I V 18-7

I I 6-16

I I I 2-29
I I I 5-20
I I I 5-21
I I I 2-13

I V 10-12
IV 10-14
I I I 2-31

I I 4-59
I I 6-18

SX-7 Second Edition

SUBROUTINES, VOLUME I

LV$SET Set the value of a CPL local variable I I 6-20

M$xy series FORTRAN compiler multiplication
rout ines.

M A D D M a t r i x a d d i t i o n (s i n g l e p r e c i s i o n) .
M A D J C a l c u l a t e a d j o i n t m a t r i x (s i n g l e

prec is ion) .
MCHR$A Move a character from one packed string

to another.
MCOF Ca lcu la te s igned co fac tor (s ing le

prec is ion) .
MCON Set matrix to constant matrix (single

prec is ion) .
MDET Ca lcu la te mat r ix de terminant (s ing le

prec is ion) .
MGSET$ Set the receiving state for messages.
MIDN Set matr ix to ident i ty matr ix (s ing le

prec is ion) .
M I N V C a l c u l a t e i n v e r t e d m a t r i x (s i n g l e

p rec i s ion) .
MKLB$F Convert FORTRAN statement label to

PL/I format.
MKON$F Create an on-unit (for FTN users).
MKON$P Create an on-unit (for any language

except FTN).
MKONU$ Create an on-unit (for PMA and PL/I

users).
MM$MLPA Make the last page of a segment

ava i lab le .
MM$MLPU Make the last page of a segment

unavai lable.
M M LT M a t r i x m u l t i p l i c a t i o n (s i n g l e

prec is ion) .
MOVEW$ Move a block of memory.
MRG1$S Merge sor ted fi les .
MRG2$ Return next merged record.
MRG3$S Close merged input files.
M S C L M a t r i x a d d i t i o n (s i n g l e p r e c i s i o n) .
MSG$ST Return the receiving state of a user.
MSTR$A Move one string to another.
MSUB Ma t r i x sub t rac t i on (s i ng le p rec i s i on) .
MSUB$A Move one substring to another.
MTRN Calcu la te t ranspose mat r ix (s ing le

prec is ion) .

B-l

I V 18-9
I V 18-11

I V 10-16

I V 18-13

I V 18-16

I V 18-18

I I I 9-5
I V 18-20

I V 18-22

I I I 7-20

I I I 7-21
I I I 7-23

I I I 7-25

I I I 4-4a

I I I 4-4b

I V 18-24

I I I 6-34
I V 17-33
I V 17-37
I V 17-38
I V 18-26
I I I 9-3
I V 10-18
I V 18-28
I V 10-20
I V 18-30

N$xy series
NAMEQ$
NLEN$A

FORTRAN compiler negation functions.
Compare two character strings.
Determine the operational length of a

s t r i n g .

B-5
I I I 6-35
I V 10-22

Second Edition SX-8

INDEX BY NAME

O$AA01

O$AC03
0$AC15
O$AD07
O$AD08
0$ALxx

O$AL04
O$AL06
0$AL14
O$AM05
0$AMlO
0$AM11
0$AM13
O$BD07
O$BM05
O$BM10
O$BP02
OPEN$A
OPNP$A
OPNV$A

OPSR$

OPSRS$

OPVP$A

OVERFL

Write ASCII to terminal or command
stream.

Parallel interface to card punch.
Parallel interface punch and print.
Write compressed ASCII to disk.
Write ASCII uncompressed to disk.
Interface to various printer

con t ro l l e r s .
Centronics line printer.
Parallel interface to MPC line printer
Versatec printer/plotter interface.
Write ASCII to 9-track tape.
Write ASCII to 7-track tape.
Write BCD to 7-track tape.
Write EBCDIC to 9-track tape.
Write binary to disk.
Write binary to 9-track tape.
Write binary to 7-track tape.
Punch paper tape (binary).
Open supplied filename.
Read filename and open.
Open filename with verification and

delay.
Locate a file using a search list and

open the file.
Locate a file using a search list and

a list of suffixes.
Read filename and open, or verify and

delay.
Check if an overflow condition has

occurred.

I V 6-6

I V 7-31
I V 7-32
I V E-2
I V 5-10
I V 7-1

I V 7-3
I V 7-3
I V 7-13
I V E-7
I V E-7
I V E-7
I V E-7
I V 5-6
I V E-7
I V E-7
I V 6-15
I V 15-6
I V 15-8
I V 15-10

I I 7 -4

I I 7-10

I V 15-13

I I I 10-7

PUB

PUN

P10B

P10U

PA$DEL
PA$LST

PA$SET
PAR$RV

PERM
PHANT$
PHNTM$
PL1$NL
POSN$A
PRERR

Input character from paper tape reader
to Register A.

Input character from paper tape to
va r iab le .

Output character from Register A to
paper-tape punch.

Output character from variable to
paper-tape punch.

Remove an object's priority access.
Obtain the contents of an object's

priority ACL.
Set priority access on an object.
Return a logical value indicating ACL

and quota support.
Generate matrix permutations.
Start a phantom process.
Start up a phantom process.
Perform a nonlocal GOTO.
Posi t ion fi le.
Print an error message.

IV 6-17

IV 6 -19

IV

IV

6-18

6-20

I I 2-27
I I 2-28

I I 2-30
I I 4-61

I V 18-32
I I I 10-8
I I I 5-23
I I I 7-27
I V 15-17
I I I 10-9

SX-9 Second Edition

SUBROUTINES, VOLUME I

PRI$RV

PRJID$
PRWF$$

PTIME$

PWCHK$

Return opera t ing sys tem rev is ion I I I 2 -15
number.

Return the user's project identifier. Il l 2-34
Read, write, position, or truncate a II 4-63

fi l e .
Return amount of CPU time used since III 2-35

log in .
Va l i d a t e s y n t a x o f a p a s s w o r d . I l l 2 - 3 6

Q$READ

Q$SET

QUICK
QUIT$

Return directory quota and disk record
usage information.

Set a quota on a subdirectory of the
current directory.

Partition exchange sort.
Determine if there are pending quits.

I I 4-70

I I 4-73

I V 17-54
I I I 3-62

RADXEX Radix exchange sort.
RAND$A Generate random number and update seed,

using 32-bit word size and the linear
congruential method.

RD$CE_DP Return caller's current command
environment depth.

RDASC Read ASCII from any device.
RDBIN Read binary from any device.
RDEN$$ Position in or read from a directory.
RDLIN$ Read a line of characters from a

compressed ASCII disk file.
RDTK$$ Parse a command line.
READY$ Display PRIMOS command prompt.
REMEPF$ Remove an EPF from a user's address

space.
REST$$ Restore an R-mode executable image.
RESU$$ Restore and resume an R mode

executable image.
RLSE$S Get input records after SETU$.
RMSGD$ Receive a deferred message.
RNAM$A Prompt, read a pathname, and check

format.
RNDI$A Initialize random number generator seed.
RNUM$A Prompt and read a number (in any

format) .
RPL$ Replace one EPF runfile with another.
RPOS$A Return posi t ion of fi le .
RRECL Read d isk record .
RSEGAC$ Determine access to a segment.
RSTR$A Rotate str ing left or r ight.
RSUB$A Rotate substring left or r ight.
RTRN$S Get sorted records.
RVON$F Revert an'on-unit (for FTN users).

IV
IV

I I

17-55
13-2

6-22

I V 4-5
I V 4-9
I I A-9
I I 4-76

I I I 3-16
I I I 2-37
I I 5-22

I I I 5-13
I I I 5-15

I V 17-26
I I I 9-7
I V 11-2

I V 13-4
I V 11-4

I I 5-24
I V 15-18
I V 5-14
I I I 2-16
I V 10-23
I V 10-26
I V 17-28
I I I 7-28

Second Edition SX-10

INDEX BY NAME

RVONU$

RWND$A

Revert an on-unit (for any lanuage
except FTN).

R e p o s i t i o n fi l e .

I l l 7 - 2 9

I V 15-19

S$xy series
SATR$$
SAVE$$
SCHAR

SEM$CL
SEM$DR
SEM$NF
SEM$OP
SEM$OU
SEM$TN
SEM$TS

SEM$TW

SEM$WT
SETRC$
SETU$S

SGD$DL
SGD$EX

SGD$OP
SGDR$$

SGNL$F
SHELL
SID$GT

SIGNL$
SIZE$
SLEEP$

SLEP$I
SLITE
SLITET
SMSG$
SNCHK$

SP$REQ
SPAS$$

SPOOL$
SR$ABSDS

FORTRAN compiler subtraction routines.
Set or modify an object's attributes.
Save an R-mode executable image.
Store a character into an array

l o c a t i o n .
Release (close) a named semaphore.
Drain a semaphore.
Notify a semaphore.
Open a set of named semaphores.
Open a set of named semaphores.
Periodically notify a semaphore.
Return number of processes waiting on

a semaphore.
Wait on a specified named semaphore,

with t imeout.
Wait on a semaphore.
Record command error status.
Prepare sort table and buffers for

CMBN$.
Delete a segment directory.
Find out if there is a valid entry at

the current position within the segment
directory on a specified unit.

Open a segment directory entry.
Position, read, or modify a segment

d i r e c t o r y .
Signal a condition.
Diminishing increment sort.
Return user number of initiating

p rocess .
Signal a condition.
Return the size of a file system entry.
Suspend a process for a specified

i n t e r v a l .
Suspend a process (interruptible).
Set the sense light on or off.
Test sense light settings.
Send an interuser message.
Check validity of system name passed

to i t .
Insert a file into the spool queue.
Set the owner and nonowner passwords on

an object.
Insert a file in spooler queue.
Disable optional rules enabled by
SR$ENABL.

B--8
I I 4--78
I I I 5--17
I I I 6--37

I I I 8--17
I I I 8--19
I I I 8--21
I I I 8--23
I I I 8--23
I I I 8--27
I I I 8--29

I I I 8 - 3 1

I I I 8-33
I I I 5-9
I V 17-22

I I 4-84
I I 4-86

I I 4-88
I I 4-90

I I I 7-30
I V 17-56
I I I 2-38

I I I 7-32
I I 4-96
I I I 8-39

I I I 8-40
I I I 10-12
I I I 10-13
I I I 9-9
I I I 2-18

I V 7-12c
I I 2-32

I V 7-8
I I 7-17

SX-11 Second Edition

SUBROUTINES, VOLUME I

SR$ADDB Add a rule to the start of a search
list or before a specified rule within
t h e l i s t .

SR$ADDE Add a rule to the end of a search
list or after a specified rule within
t h e l i s t .

SR$CREAT Create a search l ist .
S R $ D E L D e l e t e a s e a r c h l i s t .
SR$DSABL Disable an optional search rule enabled

by SR$ENABL.
SR$ENABL Enable an optional search rule.
SR$EXSTR Determine if a search rule exists.
SR$FR_LS Free l ist structure space al located by

SR$LIST or SR$READ.
S R $ I N I T I n i t i a l i z e a l l s e a r c h l i s t s t o s y s t e m

d e f a u l t s .
SR$LIST Return the names of all defined search

l i s t s .
SR$NEXTR Read the next rule from a search list.
SR$READ Read all of the rules in a search list.
SR$REM Remove a rule from a search list.
SR$SETL Set the locator pointer for a search

r u l e .
SR$SSR Set a search l is t v ia a user-defined

search rules file.
S R C H $ $ O p e n , c l o s e , d e l e t e , o r v e r i f y

existence of an object.
SRSFX$ Search for a fi le wi th a l is t of

poss ib le su ffixes .
S R T F $ S S o r t s e v e r a l i n p u t fi l e s .
SS$ERR Signal an error in a subsystem.
S S T R $ A S h i f t s t r i n g l e f t o r r i g h t .
S S U B $ A S h i f t s u b s t r i n g l e f t o r r i g h t .
SSWTCH Tes t sense sw i t ch se t t i ngs .
ST$SGS Return maximum number of static

segments.
STR$AL A l loca te use r -c lass dynamic memory.
STR$AP A l loca te p rocess-c lass dynamic memory.
S T R $ A S A l l o c a t e s u b s y s t e m - c l a s s d y n a m i c

memory.
STR$AU A l loca te user -c lass dynamic memory.
STR$FP Free process-c lass dynamic memory.
STR$FR Free user-c lass dynamic memory.
STR$FS Free subsystem-class dynamic memory.
STR$FU Free user-c lass dynamic memory.
SUBSRT Sort file on ASCII key. (V mode)
SUBSRT Sort file on ASCII key. (R mode)
S U S R $ Te s t i f c u r r e n t u s e r i s s u p e r v i s o r.

I I

I I

7-20

7-23

I I 7-26
I I 7-28
I I 7-30

I I 7-33
I I 7-36
I I 7-40

I I 7-42

I I 7-44

I I 7-48
I I 7-53
I I 7-57
I I 7-60

I I 7-63

I I 4-99

I I 4-108

I V 17-16
I I I 5 -11
I V 10-28
I V 10-30
I I I 10-14
I I I 4-26

I I I 4 -5
I I I 4 -7
I I I 4 -8

I I I 4-10
I I I 4-11
I I I 4-12
I I I 4-13
I I I 4-14
I V 17-10
I V 17-40
I I I 2-39

T$AMLC
T$CMPC
T$LMPC

Communicate with AMLC driver.
Input from MPC card reader.
Move data to LPC line printer

I V 8 - 2 3
I V 7 - 2 8
I V 7 - 6

Second Edition SX-12

INDEX BY NAME

T$MT
T$PMPC
T$SLCO
T$VG
T U B

T U N
T10B
T10U
TEMP$A
TEXTO$
TI$MSG

TIDEC
TIHEX
TIMDAT

TIME$A
TIOCT
TL$SGS
TNCHK$

TNOU

TNOUA
TODEC
TOHEX
TONL
TOOCT
TOVFD$
TREE$A
TRNC$A
TSCN$A
TSRC$$

TTY$IN

TTY$RS

TYPE$A

R a w d a t a m o v e r f o r t a p e . I V 7 - 3 7
R a w d a t a m o v e r f o r c a r d r e a d e r . I V 7 - 3 4
C o m m u n i c a t e w i t h S M L C d r i v e r . I V 8 - 3
I n t e r f a c e t o V e r s a t e c p r i n t e r . I V 7 - 1 6
R e a d a c h a r a c t e r (f u n c t i o n) f r o m I I I 3 - 2 3

PMA into Register A.
R e a d a c h a r a c t e r (p r o c e d u r e) . I l l 3 - 2 4
Wri te one character f rom Register A. I l l 3-47
W r i t e o n e c h a r a c t e r . I l l 3 - 4 8
O p e n a s c r a t c h fi l e . I V 1 5 - 2 0
C h e c k fi l e n a m e f o r v a l i d f o r m a t . I l l 1 0 - 1 5
Display standard message showing times III 2-40

used.
R e a d a d e c i m a l n u m b e r . I l l 3 - 2 6
R e a d a h e x a d e c i m a l n u m b e r . I l l 3 - 2 7
R e t u r n t i m i n g i n f o r m a t i o n a n d u s e r I I I 2 - 4 2

i d e n t i fi c a t i o n .
R e t u r n t i m e o f d a y . I V 1 2 - 7
R e a d a n o c t a l n u m b e r . I l l 3 - 2 8
R e t u r n h i g h e s t s e g m e n t n u m b e r . I l l 4 - 2 7
Ve r i f y a supp l i ed s t r i ng as a va l i d I I 4 -114

pathname.
Wr i te characters to termina l , fo l lowed I I I 3-40

by NEWLINE.
W r i t e c h a r a c t e r s t o t e r m i n a l . I l l 3 - 4 1
W r i t e a s i g n e d d e c i m a l n u m b e r . I l l 3 - 4 2
W r i t e a h e x a d e c i m a l n u m b e r . I l l 3 - 4 3
W r i t e a N E W L I N E . I l l 3 - 4 4
W r i t e a n o c t a l n u m b e r . I l l 3 - 4 5
Write a decimal number, without spaces. Ill 3-46
T e s t f o r p a t h n a m e . I V 1 0 - 3 2
T r u n c a t e a fi l e . I V 1 5 - 2 2
Scan the fi le sys tem t ree s t ruc tu re . IV 15-23
O p e n , c l o s e , d e l e t e , o r fi n d a fi l e I I A - 1 7

anywhere in the file structure.
C h e c k f o r u n r e a d t e r m i n a l i n p u t I I I 3 - 6 3

c h a r a c t e r s .
C lea r the te rm ina l i npu t and ou tpu t I I I 3 -65

b u f f e r s .
D e t e r m i n e s t r i n g t y p e . I V 1 0 - 3 5

r
r

UID$BT
UID$CH

UNIT$A
UNITS$

UNO$GT
UPDATE

USER$
UTYPE$

Return unique bit string.
Convert UID$BT output into character

s t r i n g .
Check for file open.
Return caller's minimum and maximum

file unit numbers.
List users with same name as caller.
Update current directory (PRIMOS II

o n l y .
Return user number and count of users
Return user type of current process.

SX-13

I I I 6 - 3 9
I I I 6 - 4 0

I V 1 5 - 2 8
I I 4 - 1 1 7

I I I 2 - 4 4
I I I 1 0 - 1 7

I I I 2 - 2 0
I I I 2 - 4 5

Second Edition

SUBROUTINES, VOLUME I

VALID$ Validate a name against composite
i d e n t i fi c a t i o n .

Il l 2-41

WILD$

WRASC
WRBIN
WRECL
WTLIN$

Return a logical value indicating
whether a wildcard name was matched,

Write ASCII.
Write binary to any output device.
Write disk record.
Write a line of characters to a

compressed ASCII file.

I I 4-118

I V 4-3
I V 4-7
I V 5-17
I I 4-120

YSNO$A Ask question and obtain a yes or no
answer.

IV 11-7

Z$80 Clear double-precision exponent B-5

Second Edition SX-14

Index

A$KEYS. INS .CC, 4 -3

Addressing modes, and
s u b r o u t i n e s , 1 - 1 3

A p p l i c a t i o n s l i b r a r y, 1 - 6

Argument codes, 2-6

Ar i thmet ic subrout ines ca l lab le
from PMA, B-l

data type codes, B-3
p r e fi x e s , B - l , B - 2
s ing le-argument subrout ines,

B-5
table of single-argument

sub rou t i nes , B -6
table of two-argument

sub rou t i nes , B -9 , B - l l
two-argument subrout ines, B-7

A r rays ,
in FORTRAN, 6-7 to 6-10
in Pascal, 7-9

ASCII character arrays in PL/I,
8 -7

ASCII character str ings,
in C, 4-7
in COBOL or CBL, 5-7
in PL/ I , 8-8
in PMA, 9-7

B

BIND u t i l i t y, 1 -12
LI command, 1-12
MAP -UNDEFINED command, 1-12

B I T (l) ,
in BASIC/VM, 3-9
in FORTRAN, 6-5
in PMA, 9-9

BIT(l) ALIGNED in Pascal, 7-8

BIT(n) in Pascal, 7-8

CALL command, 2-1
AP instruction (PMA), 9-2
DAC pseudo-operation (PMA),

9-2

X - l Second Edition

SUBROUTINES, VOLUME I

CALL command (continued)
in BASIC/VM, 3-2
in COBOL or CBL, 5-1
in FORTRAN, 6-1
in PL/ I , 8-1
in PMA, 9-1

Call statement in Pascal, 7-1

Ca l l i ng func t i ons , 2 -2

Cal l ing subrout ines, 2-1, 2-2

Calling subroutines from R-mode
PMA, 9-2

Calling subroutines from V-mode
or I-mode PMA, 9-2

Character arrays in C, 4-11

CHARACTER(*)VARYING,
in C, 4-12
in COBOL or CBL, 5-10
in FORTRAN, 6-6
in Pascal, 7-11
in PMA, 9-8

CHARACTER(n) in Pascal, 7-9

CHARACTER(n)NONVARYING,
in BASIC/VM, 3-6
in COBOL or CBL, 5-8
in FORTRAN, 6-10
in PMA, 9-9

CHARACTER(n)VARYING in Pascal,
7-10

CHARACTERS in FORTRAN, 6-10

COMP data type, 5-3

Compiler options, -NEWFORTRAN,
4-2

Controllers, synchronous and
asynchronous, 1-3

D

Data type equivalents,
in BASIC/VM, 3-2
in C, 4-4
in COBOL and CBL, 5-2
in FORTRAN, 6-2
in Pascal, 7-3
in PL/I , 8-3

Data types,
FTN, 2-6
P L / I , 2 - 3

DECLARE statement in PL/I, 8-1,
8-2

DYNTS (dynamic entry points),
1-9

snapping, 1-9

Entry points , 1-9

Enumeration data type in C, 4-5

EPF (executable program format)
l i b ra ry c l asses , 1 -8

EPFs, l ib rary, 1 -8
process class, 1-8
program class, 1-8

ERRD.INS.CC, 4-3

Error codes, 2-8

Compiler options, -NOCONVERT,
4 -3

Compiler options, -OLDFORTRAN,
4-2

Condit ion-mechanism subroutines,
1-4

F i l e -hand l i ng sub rou t i nes , 1 -2

FIXED BIN(15),
in BASIC/VM, 3-4
in C, 4-6

Second Edition X-2

INDEX

FIXED BIN(15) (continued)
in FORTRAN, 6-4
in Pascal, 7-5
in PMA, 9-3

FIXED BIN(31),
in BASIC/VM, 3-7
in C, 4-7
in CBL, 5-5
in COBOL, 5-5
in FORTRAN, 6-4
in Pascal, 7-5
in PMA, 9-4

FLOAT BIN in Pascal, 7-6

FLOAT BIN(23) in C, 4-8

FLOAT BIN(47),
in C, 4-9
in Pascal, 7-7

Floating-point exception
interrupt processor, A-5

FORTRAN library, 1-5

FORTRAN storage class in C, 4-2

FUNCTION declaration statement in
Pascal, 7-2

Functions, calling, 2-2
from FORTRAN, 6-1
from Pascal, 7-2
from PL/I, 8-2

Integer arrays (continued)
in PL/I, 8-7
in PMA, 9-6

INTEGER in FORTRAN, 6-4

INTEGER*2,
in BASIC/VM, 3-4
in C, 4-6
in FORTRAN, 6-4
in Pascal, 7-5
in PL/I, 8-4
in PMA, 9-3

INTEGER*2 or FIXED BIN(15) in
COBOL or CBL, 5-3

INTEGER*4,
in BASIC/VM, 3-7
in C, 4-7
in CBL, 5-5
in COBOL, 5-5
in FORTRAN, 6-4
in Pascal, 7-5
in PL/I, 8-5
in PMA, 9-4

Intrinsic functions, FORTRAN
l i b ra r y, A -4

-INTS compile option, 6-4

IOCS (input-output control
system), 1-13

K

I-mode subroutine libraries,
1-13

I/O subroutines, 1-3

Input-output Control System
(IOCS), 1-13

Integer arrays,
in BASIC/VM, 3-7
in C, 4-11
in COBOL or CBL, 5-9
in Pascal, 7-9

Key codes, 2-6

KEYS.INS.CC, 4-3

LI command,
BIND utility, 1-12
SEG utility, 1-12

L ib ra r ies ,
linking, and loading, 1-11
location of, 1-12

X-3 Second Edition

SUBROUTINES, VOLUME I

Library EPFs, 1-8

Linking and loading libraries,
1-11

LOGICAL,
in BASIC/VM, 3-5
in FORTRAN, 6-5
in Pascal, 7-5
in PL/I, 8-8
in PMA, 9-5

LOGICAL*l in C, 4-10

LOGICAL*2,
in COBOL or CBL, 5-4
in FORTRAN, 6-5

LOGICAL*4 in COBOL or CBL, 5-5

LONGREAL Pascal data type, 7-7

LSR command, 1-10

PCL instruction (PMA), 9-1

POINTER,
in C, 4-14
in CBL, 5-3
in COBOL, 5-3
in FORTRAN, 6-11

POINTER OPTIONS (SHORT) in C,
4-14

PRIMOS subroutines, 1-6

PROCEDURE declaration statement
in Pascal, 7-1

PTR in C, 4-14

Quad precision in PMA, 9-6

M R

Matrix l ibrary, 1-6 R-mode subroutine libraries,
1-12

N

-NEWFORTRAN compiler option, 4-2

-NOCONVERT compiler option, 4-3

-OLDFORTRAN compiler option, 4-2

OPTIONS(SHORTCALL) declaration in
PL/I, 8-2

PACKED ARRAY[l..n] OF CHAR Pascal
data type, 7-9

REAL,
in FORTRAN, 6-6
in Pascal, 7-6
in PL/I, 8-6
in PMA, 9-5

REAL*4,
in BASIC/VM, 3-9
in C, 4-8
in CBL, 5-6
in COBOL, 5-6
in FORTRAN, 6-6
in Pascal, 7-6
in PL/I, 8-6
in PMA, 9-5

REAL*8,
in BASIC/VM, 3-9
in C, 4-9
in CBL, 5-6
in COBOL, 5-6
in FORTRAN, 6-6
in Pascal, 7-7

Second Edition X-4

REAL*8 (continued)
in PL/I, 8-6
in PMA, 9-6

Search rules lists, 1-10

SEG utility, 1-12
LI command, 1-12
MAP 3 command, 1-12

Semaphore-handling subroutines,
1-4

Shared and unshared libraries,
1-7

Sort l ibraries, 1-7

Static mode libraries, 1-8

STRING Pascal data type, 7-11

STRING[n] Pascal data type, 7-10

STRUCT statement in C, 4-11,
4-12

Structures, PL/I data type, in
Pascal, 7-14

Subroutine arguments, 2-2

Subroutine libraries,
I-mode, 1-13
R-mode, 1-12
V-mode, 1-12

Subroutines,
calling, from C, 4-1
declaring, in BASIC/VM, 3-1

Subroutines internal to FORTRAN,
table of, A-1

Subroutines, calling, 2-1, 2-2

Synchronous and asychronous
con t ro l le rs , 1 -3

INDEX

SYSCOM files,
how to read, 2-8
inserting, into programs, 2-6
not used in BASIC/VM, 3-2

SYSCOM>A$KEYS.INS.language, 2-7

SYSCOM>ERRD.INS.language, 2-8

SYSCOM>ERRD.INS.PMA, 9-2

SYSCOM>KEYS.INS.language, 2-7

SYSCOM>KEYS.INS.PMA, 9-2

System subroutines not recognized
by BASIC/VM, 3-2

U

Using SYSCOM tables, 4-3, 5-2,
6-1, 7-2, 8-3, 9-2

V

V-mode subroutine libraries,
1-12

VAPPLB, 4-4

Void data type in C, 4-5

X-5 Second Edition

SURVEY

READER RESPONSE FORM

Subroutines Reference Guide Volume I DOC10080-2LA
Your feedback will help us continue to improve the quality, accuracy, and organization

of our publications.

1. How do you rate this document for overall usefulness?

□ exce l len t □ very good D good D fa i r □ poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer
companies?

D Much better D Slightly better D About the same
D Much worse D Sl ight ly worse D Can't judge

5. Which other companies* manuals have you read?

N a m e : P o s i t i o n :

Company:
Address:

Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	About This Book
	ix
	x
	xi
	xii
	Chapter 1
	Subroutines and Libraries
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	Chapter 2
	Using Subroutines
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	Chapter 3
	Calling Subroutines from BASIC/VM
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	Chapter 4
	Calling Subroutines From C
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	Chapter 5
	Calling Subroutines From COBOL
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	Chapter 6
	Calling Subroutines From FORTRAN
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	Chapter 7
	Calling Subroutines From Pascal
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	Chapter 8
	Calling Subroutines From PL/I
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	Chapter 9
	Calling Subroutines From PMA
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	Appendices
	Appendix A
	FORTRAN Internal Subroutines
	A-1
	A-2
	A-3
	A-4
	A-5
	Appendix B
	Arithmetic Routines Callable from PMA
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	Appendix C
	Data Type Equivalents
	C-1
	C-2
	C-3
	Indexes
	Index of Subroutines
	SX-1
	SX-2
	SX-3
	SX-4
	SX-5
	SX-6
	SX-7
	SX-8
	SX-9
	SX-10
	SX-11
	SX-12
	SX-13
	SX-14
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	Survey
	
	

