AR

B

Prime.

Subroutines
Reference Guide

Volume I

Revision 21.0
DOC10080-2LA

Y)

Y Y

Subroutines
Reference Guide
Volume |

Second Edition

by

John Breithaupt

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright C) 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime
INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM,
PST 100, PT25, PT45, PTe65, PT200, PW153, PwW200, PW250, RINGNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
9650, 9655, 9750, 9755, 9950, 9955, and 9955II are trademarks of Prime
Computer, Inc.

PRINTING HISTORY -- Subroutines Reference Guide, Volume 1

First Edition (DOC10080-1LA) August 1986 for Release 20.2
Second Edition (DOC10080-2LA) August 1987 for Release 21.0

CREDITS

Project Support David Brooks, Len Bruns,
Matthew Carr, Ellen Desmond,
Camilla Haase, Sheryl Horowitz,
Joan Karp, Alice Landy,
Fran Litterio, Lee McGraw,
Ewan Milne, Margaret Taft

Editorial Support Thelma Henner

Graphic Support Mingling Chang

Production Support Judy Gordon

Document Support Celeste Henry, Peg Theriault

ii

J

Y

J J

b

Y Y

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

iii

3 3

Contents

ABOUT THIS BOOK ix

1 SUBROUTINES AND LIBRARIES

Introduction

Major Functions of Subroutines
Standard Libraries

Shared and Unshared Libraries
Static and Dynamic Libraries
Dynamic Entrypoints (DYNTs)
Search Rules Lists

Linking and Loading Libraries
Subroutines and Addressing Modes

P = e ey
I
PBPRPOoodON P

w = o

2 USING SUBROUTINES

Introduction 2-1
Calling Subroutines 2-1
Calling Functions 2-2
Subroutine Arguments 2-2
How to Read SYSCOM Files 2-8

3 CALLING SUBROUTINES FROM BASIC/VM

Call Format
SYSCOM Keys
System Subroutines Not Recognized
by BASIC/VM 3
Data Types 3-

w W
U
NP

|
NN

4 CALLING SUBROUTINES FROM C

Call Format 4-1
The FORTRAN Storage Class 4-2
Using the —-OLDFORTRAN and
-NEWFORTRAN Options 4-2
Using the -NOCONVERT Option 4-3
Using SYSCOM Files 4-3
Data Types 4-4

CALLING SUBROUTINES FROM COBOL

Call Format

Using Numeric Equivalents of
SYSCOM Keys

Data Types

CALLING SUBROUTINES FROM FORTRAN

Call Format
Using SYSCOM Files
Data Types

CALLING SUBROUTINES FROM PASCAL

Call Format
Using SYSCOM Files
Data Types

CALLING SUBROUTINES FROM PL/I

Call Format

The OPTIONS (SHORTCALL) Declaration
Using SYSCOM Files

Data Types

CALLING SUBROUTINES FROM PMA

Call Format

Calling Subroutines from V-mode and
I-mode PMA

Calling Subroutines from R-mode PMA

Using SYSCOM Files

Data Types

APPENDICES

A FORTRAN Internal Subroutines

Internal Subroutines
Intrinsic Functions
Floating-point Exceptions

vi

(S 0N]
|
N =

o oo
|
NP

N
1
w N =

J

J J

D

D)

Arithmetic Routines Callable from PMA

Introduction

Format and Arguments
Single—-argument Subroutines
Two—-argument Subroutines

Data Type Equivalents

INDEX OF SUBROUTINES
INDEX

3

YD

About This Book

The Subroutines Reference Guide gives a systematic description of the
standard Prime subroutine libraries. Each standard subroutine library
is a binary file containing subroutines that perform a variety of
related programming tasks. Whenever these tasks are to be performed,
programmers can use the subroutines in the standard libraries instead
of writing their own routines. Programmers must write subroutines only
to perform specialized tasks for which no standard subroutines exist.

OVERVIEW OF THIS SERIES

The Subroutines Reference Guide comprises four volumes. The contents
of each volume are as follows.

Volume I

Chapter 1 provides a general introduction to subroutines and subroutine
libraries.

Chapter 2 describes how to call subroutines and functions.

Chapters 3 through 9 describe how to choose proper data types for
parameters of subroutines called from programs written in the following
languages: BASIC/VM, C, COBOL, FORTRAN, Pascal, PL/I, and PMA. Each
of these chapters describes a language’s data description formats and
subroutine calling sequence. Each chapter also emphasizes the
necessity of making data type descriptions in the calling language

ix

compatible with the data type descriptions used by the subroutines
called; at the object code 1level, the calling 1language and the
subroutines called must specify the same data types.

Most of the descriptions of subroutines in the Subroutines Reference

Guide use a PL/I calling format. Chapters 3 through 8 in Volume I
contain tables listing data types in the different Prime programming
languages that are equivalent to those in PL/I and FORTRAN.

The remaining three volumes in the series describe in detail the
different subroutine libraries.

Volume II

Volume II describes several functional groups of subroutines, dealing
with the access to and management of file system entities, the
manipulation of EPFs in the execution environment, and the use of a
number of command environment functions. Three chapters are devoted to
subroutines related to the file system, and one chapter each is devoted
to those related to EPF management and to the command environment.

Volume IIT

Volume III describes system subroutines. The subroutines covered in
this volume are the general system calls to the operating system and
standard system 1library. This excludes file and EPF manipulation,
which are described in Volume II.

Volume IV

Volume IV presents several mature libraries: the Input/Output Control
System (IOCS) 1libraries and other 1I/0-related subroutines, the
Application libraries, the Sort libraries, and MATHLB.

IOCS provides device-independent I/0. The chapters on I0OCS provide
descriptions of the device-independent subroutines as well as those
device-dependent subroutines simplified by IOCS. Another section
provides descriptions of the synchronous and asynchronous device-driver
subroutines. '

Sections on the Application Library, the Sort Libraries, and the
FORTRAN Matrix Library provide descriptions of other program
development subroutines especially useful for FORTRAN programs.

J

J

D

D

SUGGESTED REFERENCES

The Prime User’s Guide (DOC4130-4LA) and its updates (UPD4130-41A,
UPD4130-42A) contain information on system use, directory structure,
the condition mechanism, CPL files, ACLs, and how to load and execute
files with external subroutines. Language programmers will also need
the reference guide for their particular languages.

Programmers who wish more advanced information on library management or
I/0 manipulation should consult the System Administrator’s Guide,
Volume 1: System Configuration (DOC10131-1LA) and System
Administrator’s Guide, Volume 2: Communication Lines and Controllers

(DOC10132~1LA) .
The following related Prime publications are also available:

Advanced Programmer’s Guide, Volume 1l: BIND and EPFs
(DOC10055-11L3)

Assembly Language Programmer’s Guide
(DOC3059-2LA)

BASIC/VM Programmer’s Guide
(FDR3058-101A, COR3058-001, COR3058-002, UPD3058-33A)

C User’s Guide
(DOC7534-3LA)

COBOL 74 Reference Guide
(DOC5039-2LA, UPD5039-21A, UPD5039-223)

CPL User’s Guide
(DOC4302-3LA)

FORTRAN Reference Guide
(FDR3057-101A, COR3057-001, COR3057-002, UPD3057-33A, UPD3057-34A)

FORTRAN 77 Reference Guide
(DOC4029-4LA, UPD4029-41A, UPD4029-42A))

Pascal Reference Guide
(DOC4303-4LA, UPD4303-31A)

PL/I Reference Guide
(DOC5041-1LA, UPD5041-11a)

Programmer’s Guide to BIND and EPFs
(DOC8691-11A)

SEG and LOAD Reference Guide
(DOC3524-192L, UPD3524-21A)

System Architecture Reference Guide
(DOC9473-2LA)

xi

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement

formats, and in examples throughout this document.
may be entered in either uppercase or lowercase.

Convention

UPPERCASE

lowercase

underlining
in
examples

Brackets

(]

Braces

{1}

Ellipsis

Parentheses

()

Hyphen

Explanation

In command formats, words in
uppercase indicate the actual
names of commands, statements,
and keywords. They can be
entered in either uppercase
or lowercase.

In command formats, words
in lowercase indicate items
for which the user must
substitute a suitable value.

In examples, user input is
underlined but system prompts
and output are not.

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items (0-n).

Braces enclose a vertical
list of items. Choose one
and only one of these items.

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must be
entered exactly as shown.

Wherever a hyphen appears in
a command line option, it is
a required part of that
option.

xii

Terminal input

Example

SLIST

LOGIN user-id

OK, SEG -LOAD ﬂ

CALL xxx (key [,altrtn])

CLINEQ ‘\

CALL { LINEQ
DLINEQ

item-x[,item-y]...

CALL TIMDAT (array, n)

SPOOL -LIST

J

Yy D

1
Subroutines and Libraries

INTRODUCTION

Subroutines are modules of object code that can be called by programs
or other modules to perform commonly required tasks. Subroutines can
also be called to perform tasks that the calling program or module
cannot perform as efficiently, or cannot perform at all.

Prime supplies a number of standard subroutines, known as system

subroutines. Some of these are part of the PRIMOS operating system.

The others are contained in standard subroutine libraries. Subroutine
libraries are files that contain subroutines which perform similar or
related tasks.

Users can write their own subroutines to perform tasks not performed by
the system subroutines. However, this guide deals only with system
subroutines.

This chapter discusses the following topics:
e Major functions of system subroutines.

e Standard Libraries. Prime supplies a wide variety of standard
libraries that support basic system operation.

e Shared and Unshared Libraries. More than one program can use a
shared library. However, a program must use its own separate
copy of an unshared library; the system loads this copy with
the program that uses it.

1-1 Second Edition

SUBROUTINES, VOLUME I

e Static-mode libraries. Prime supplies these libraries. The SEG
and BIND utilities link them to the programs that call them.

e Library EPFs (Executable Program Files). These libraries
contain subroutines to which programs link themselves when they
are executed. The BIND utility creates 1library EPFs. Prime
supplies some library EPFs.

e DYNTs (Dynamic Entrypoints). Dynts are subroutine names that
are linked with programs. When the programs are executed, the
system uses the dynts to find the starting addresses of the
subroutines.

e Search Rules Lists. These are 1lists of 1library EPFs and
directives that contain the entrypoints to which dynts are
converted at run time. The 1lists tell the system where to
search for the entrypoints.

e Loading and Linking Libraries.

e Subroutines and addressing modes.

MAJOR FUNCTIONS OF SUBROUTINES

System subroutines perform a wide variety of functions. Among these
functions are the following:

e File handling
e I/0 processing

e Supporting synchronous and asynchronous controllers

Semaphore handling

Supporting the condition mechanism

File Handling

File-handling system subroutines support communication between the
PRIMOS file structure and user programs. For example, they can verify
the existence of a file before the program accesses it, delete a file,
or verify that a filename entered by a user is valid. File-handling
subroutines manage the ACL system, which controls file access.

Second Edition 1-2

J

YD

SUBROUTINES AND LIBRARIES

Many of the file-handling subroutines allow a program to access files
directly through file wunit numbers, a method which is faster than
access by filenames. For example, at the program level the filename
TEXT and the file unit number 1 can be associated by the PRIMOS
subroutine SRCH$$, as in the following call:

CALL SRCH$$ (K$WRIT, ‘TEXT’, 4, 1, TYPE, code)
Afterwards, other subroutines can access the file by unit number.
Some file-handling subroutines are internal to PRIMOS, and others are

available as application library routines. Volume II of this guide
discusses file-handling subroutines.

I/0 Processing

The I/0 subroutines are those relating to data transfers and device
operations. Subroutines managed by the Input/Output Control System
(IOCS) perform input and output between the Prime computer and the
disks, terminals, and peripheral devices within the system
configuration.

The I/0 subroutines include:
® Subroutines that function as device-independent drivers which
route I/0 requests to specific drivers, thus allowing the user
to maintain device independence

e Disk subroutines that perform disk input/output operations

® Subroutines that transfer data between a user terminal or
paper-tape device and memory

e Peripheral device routines that control 1line printers, a
printer/plotter, serial and parallel card readers, and 7-track
and 9-track tapes

Volume IV of this guide describes IOCS subroutines and other
I/0O-related subroutines.

Supporting Synchronous and Asynchronous Controllers

A number of subroutines move data for assigned synchronous or
asynchronous lines. Volume IV of this guide describes these
subroutines.

1-3 Second Edition

SUBROUTINES, VOLUME I

Semaphore Handling

Semaphores are hardware components which ensure that only a set number
of users access certain system resources at a time, and that

reallocation of the resource is orderly and controlled. PRIMOS
includes a set of subroutines that provide access to Prime’s semaphore
primitives and to internal timing facilities. These subroutines

support user applications that have realtime requirements or need to
synchronize execution with other wuser programs. Volume III of this
guide describes these subroutines.

Supporting the Condition Mechanism

A program can activate the condition mechanism when it encounters
unexpected occurrences such as:

e End of file

e Illegal address

e An attempt to divide by 0

o Use of the BREAK key from a terminal

The condition mechanism either repairs the problem and restarts the
program, or terminates the program in an orderly manner. To do this,
the condition mechanism activates diagnostic or remedial code blocks
called on-units.

Users writing in FORTRAN 66 (FTN), FORTRAN 77 (F77), PL/I, Pascal, or
PMA can define their own on-units. However, all users are
automatically protected by PRIMOS system on-units. When an error
condition occurs, the condition mechanism looks for on-units within the
executing procedure. If it finds none, or if the procedure’s on-units
continue to signal the condition, the condition mechanism searches
first through the <calling procedures’ on-units and then through the
system’s on-units, activating the first appropriate on-unit it finds.

Volume III of this guide describes subroutines that support the
condition mechanism.

- Second Edition 1-4

J

J

Yy D

SUBROUTINES AND LIBRARIES

STANDARD LIBRARIES

This section describes the functions of the following major libraries
and subroutine groups:

e FORTRAN library
e General PRIMOS subroutines
e Matrix library
e Applications library
e Sort libraries
e Spool libraries
To load these libraries, use the LI command of the BIND and SEG

utilities. For a fuller discussion of the use of this command, see the
section in this chapter titled LINKING AND LOADING LIBRARIES.

FORTRAN Library

The FORTRAN library is indispensable for the functioning of most other
libraries because references to system subroutines are resolved in the
FORTRAN library. The FORTRAN library contains:

e Many PRIMOS subroutines, such as those in the IOCS 1library and
all PRIMOS file-handling subroutines.

e FORTRAN function subroutines and mathematical subroutines
described in the FORTRAN Reference Guide and the FORTRAN 77
Reference Guide.

e Arithmetic subroutines that the FORTRAN compiler uses. Some of
these subroutines can also be called from PMA. These routines
perform operations on single-precision integers,
single-precision and double-precision floating point numbers,
and complex numbers.

1-5 Second Edition

SUBROUTINES, VOLUME I

General PRIMOS Subroutines

General PRIMOS subroutines perform the following functions:
® Managing system information
e Managing global variables
e Handling phantoms

e File system management

Matrix Library

MATHLB {FORTRAN matrix subroutines) contains subroutines that
e Perform matrix operations
® Solve systems of simultaneous linear equations
® Generate permutations and combinations of elements

These subroutines are currently available only in R mode.

Applications Library

The Applications library contains easy-to-use service subroutines which
range from simple subroutines which do 1little more than call
lower-level subroutines, to subroutines that perform functions such as:

e String handling

e User query

e System information retrieval

e Mathematical operations

e Conversion

e File system management

e Parsing
Subroutines in this library often duplicate the work of subroutines in
the File System library, or even call those routines. For example, to
delete a file, you may use SRCH$$ or TSRC$$ in the File System library,
or you may call DELES$A in the Applications library. DELESA requires

fewer arguments than the other subroutines, but it may be slightly
slower because it makes calls to three subroutines.

Second Edition 1-6

J

D

SUBROUTINES AND LIBRARIES

Sort Libraries

Four libraries contain sort subroutines:

e VSRTLI, a V-mode library containing subroutines that
perform most file sorting and merging operations

e SRTLIB, the R-mode version of VSRTLI

e VMSORT, a V-mode library containing several in-memory
sort subroutines and a binary search subroutine

e MSORTS, the R-mode version of VMSORT

Spool Libraries

The spooler subsystem enables users of a Prime system or network to
print their files in an efficient and organized manner. Options of the
spooler subsystem enable the user to defer printing to some later time,
specify the site at which the job is to print, and specify the number
of copies to be printed. There are two libraries of subroutines that
support spooler subsystems:

e SPOOLS$.BIN, an R-mode library

e VSPOOL.BIN, a V-mode library

SHARED AND UNSHARED LIBRARIES

All libraries can exist in both shared and unshared versions. A shared
library allows all programs to access its subroutines. For this
reason, each system needs only one copy of a shared library.

A program that is to use subroutines in an unshared library must make
its own copies of the subroutines. The system places the copies in the
user space of the program’s owner and links the program with the copies
to form a single executable module. When you run a program linked to
subroutines in an unshared library, the system allocates additional
memory for it and for all the subroutines it calls. This memory
remains allocated until the user logs out or frees segments. To save
memory, use shared libraries whenever possible.

By convention, unshared libraries have names that begin with the letter

N (for nonshared). For example, the unshared Pascal library is named
NPASLIB.BIN, while the shared Pascal library is named PASLIB.BIN.

1-7 Second Edition

SUBROUTINES, VOLUME I

STATIC AND DYNAMIC LIBRARIES

All libraries belong to one of two categories: those that are loaded
statically, and those that are loaded dynamically. Libraries that are
loaded statically are referred to as static-mode libraries. Those that
are loaded dynamically are referred to as library EPFs.

Static-mode Libraries

The system always loads a static-mode 1library into the same system
segment. The library remains in this segment, where it is available
for use whenever it is needed. All static-mode libraries are shared
libraries.

Ordinarily, only the System Administrator needs to be aware that a
given library is loaded in static mode. If you use the appropriate LI
command in a BIND or SEG session, the standard system search rules
ensure that the static-mode libraries are searched. Your system may
have several static-mode shared libraries included in the system build;
ask your System Administrator for details.

Library EPFs

A library EPF contains executable subroutines that link to a program
when the program is executed. The program links to entrypoints within
the library EPF by means of the dynamic linking mechanism. When a
library EPF is called, PRIMOS maps it to any segment available. If the
library is called again, the system may map the library into a totally
different segment, provided that the 1library has not been mapped
between calls.

Library EPFs are created by the BIND utility. They have the suffix
.RUN (latest version) or .RPn (for versions in use when BIND creates a

newer version).

Classes of Library EPFs

Library EPFs are divided into two classes, program class and process
class.

Program-class libraries: Use these libraries when no data is to be
passed from one program calling the subroutines to the next. For
example, FORTRAN_IO_LIBRARY.RUN 1is a program-class library because it
includes certain file control blocks and other variables that must be
reset for each execution of a program.

Process—-class libraries: Use these libraries when some data may be
passed from one program calling the subroutines to the next. For
example, SYSTEM_LIBRARY.RUN is a process-class library. It need not be
reinitialized while the process continues, because it contains only

Second Edition 1-8

J

3

Yy D

SUBROUTINES AND LIBRARIES

linkages (Indirect Pointers and Entry Control Blocks) that do not
change after the library is initialized.

For a thorough discussion of the difference between process-class
libraries and program-class libraries, refer to the Advanced
Programmer’s Guide, Volume 1, BIND and EPFs.

DYNAMIC ENTRYPOINTS (DYNTS)

Programs can use dynamic entrypoints, or dynts, to access libraries of
general PRIMOS subroutines, library EPFs, and static-mode libraries.
To access a subroutine, the system converts the subroutine’s dynt into
an address for the start of that subroutine. The process of converting
a dynt into an address is referred to as snapping the dynt. Dynts are
snapped at runtime. BIND 1links the binary file containing the dynts
with a program but does not link the subroutine code.

The code for any procedure referenced by a dynt can be in any of the
following:

e A library EPF
e A segment used by a static-mode shared library
e PRIMOS

The location of the code depends on runtime conditions.

For example, suppose that a program requests a subroutine from the
Pascal- library PASLIB.BIN, and PASLIB.BIN holds a dynt to this
subroutine, which is resident in the library EPF PASCAL_LIBRARY.RUN.
If the dynt is not mapped, the system uses the search rules and system
hashing tables to call the .RUN file to do the mapping. To access the
subroutine, the program branches to the address currently given to the
dynt; this address is established when the library EPF maps the dynt
to the system. The program then branches to the subroutine it needs.

If PASLIB.BIN holds a dynt to a subroutine resident in a static-mode
library, the program branches to its static address at the proper time.
Individual user space holds a single copy of pure code for any
subroutine. It is not burdened with reserving static system segments
to hold possibly unused code.

Dynts for subroutines that are not in R mode may require several
library EPFs. For example, giving the SEG or BIND command LI PASLIB
may cause the system to use dynts that call subroutines from
PASCAL_LIBRARY.RUN, which in turn contains dynts that require
SYSTEM_LIBRARY.RUN and PRIMOS_LIBRARY.RUN. These library EPFs should
be part of your system search rules list. (See the section titled
Search Rules Lists below.)

1-9 Second Edition

SUBROUTINES, VOLUME I

For more information about how dynts are used to access subroutines,
see the section titled Dynamic Linking Mechanism in the
Advanced Programmer’s Guide, Volume 1.

SEARCH RULES LISTS

PRIMOS uses search rules lists to determine pathnames for directories,
files, and entrypoints. PRIMOS provides every user with five search
lists: ATTACHS$, INCLUDES$, BINARYS$, COMMANDS, and ENTRYS. It uses

ATTACHS to search partitions for top-level directories. It uses
INCLUDES$, BINARYS$, and COMMANDS$ to search directories for source,
binary, and executable code files, respectively. It uses ENTRY$ to

search library EPF files for entrypoints.

You can modify the contents of these search lists and create other
search lists as required. These search 1lists and the search rules
facility are described in greater detail in the Advanced Programmer’s

Guide, Volume II.

As stated above, PRIMOS uses the ENTRY$S search 1list to locate
entrypoints when it resolves dynts. ENTRYS contains a keyword,
-STATIC_MODE_LIBRARIES, that causes PRIMOS to search static-mode
libraries; if the entrypoint is found there, PRIMOS stops searching.
ENTRY$ also contains a separate search rule for each library EPF. If
the ENTRY$ search 1list does not contain a search rule for a library
EPF, it cannot resolve dynts to entrypoints in that library at runtime.
If a dynt is 1linked successfully, but is not replaced with the
entrypoint link to the code at execution, an error occurs reporting
that a subroutine cannot be found. When this error occurs, verify that
the appropriate library EPF is listed in the ENTRY$ search list. If
you create a private subroutines library, you must add the pathname of
that library to your ENTRY$ search list.

There are three PRIMOS commands and several subroutines that you can
use to check and modify the contents of your search lists. You can use
the SET_SEARCH_RULES (SSR) command to set search rules in a search
list. You can use the EXPAND_SEARCH_RULES (ESR) command to use a
search list to determine the absolute pathname of a file or entrypoint.
You can also use ESR to test whether a search list can locate a
particular item. You can use the LIST_SEARCH_RULES (LSR) command to
list the contents of your search lists. These commands are further
described in the PRIMOS Commands Reference Guide; search rule
subroutines are described in the Subroutines Reference Guide, Volume
II.

Second Edition 1-10

J

J

h)

SUBROUTINES AND LIBRARIES

Both the search rule and the file it refers to must be present for a
runtime search to be successful. For example, if you are trying to run
a CBL program, and within BIND you successfully linked LI CBLLIB, you
still need the following:

e A copy of the library EPF CBL_LIBRARY.RUN on your system

e An ENTRYS$ search list that includes the pathname to
CBL_LIBRARY.RUN

If the ENTRY$ search list does not contain the pathname entry, you can
add this entry to your own ENTRY$ search rules file and then wuse the
SSR command to establish the new ENTRYS$ search list; or, you can ask
the System Administrator to add this entry to the default ENTRY$ search
list for all users. If this pathname is present in ENTRY$ but the
system cannot find the subroutines, then the library either was loaded
with a different pathname or was not loaded at all. See your System
Administrator for help.

Note

Be careful not to assign names of PRIMOS subroutines to your
own library EPF entrypoints. If the name of one of your
entrypoints is identical to one named in a public library (for
example, PASCAL_LIBRARY.RUN), the library that is listed first
in the ENTRYS$ search list always provides the subroutine. This
can result in a PRIMOS subroutine being executed instead of a
user-written subroutine with the same name.

LINKING AND LOADING LIBRARIES

All PRIMOS subroutine libraries have been compiled before they are
placed in the system. A source code library that has been compiled is
known as a binary library. Binary libraries that are to be used by a
program must be loaded into the program’s runtime file (memory image).
All object files loaded into one runtime file must be in the same
addressing mode. (See the section titled Subroutines and Addressing
Modes, below.)

Binary libraries are stored in the directory LIB. To get a list of all
the libraries in the directory LIB, attach to that directory and give
the LD command. Some libraries in LIB are not described in this guide.
The subroutines in some of these libraries are discussed in the manuals
for specific products, such as PRIMENET, FORTRAN, the Block Device
Interface (BDVLIB), and MIDASPLUS (KIDALB and VKDALB) . The calls to
subroutines in other libraries, such as RPG, are produced automatically
by compilers; the details do not concern the programmer.

1-11 Second Edition

SUBROUTINES, VOLUME I

When you run the
program, use the command

LI library-name

where library-name designates the name of a library, such as VSRTLI

VAPPLB, to be loaded with the program.
.BIN suffix in the LI command.

LI

at the end of a SEG or BIND session to link your program to the

default libraries, such

the FORTRAN library.

system

SEG or BIND programs to link a binary library to a

or
You do not need to include the
Use the command

You must use the LI

command even if your program does not call any subroutines. Whi

do not

need the default libraries command for this situation,
not incur any system penalties by including it.

display the message BIND COMPLETE before you give this command.

Separate versions of the libraries are required for use with R-mode and
shared libraries and their
It is a good idea to be
so that you

V-mode files.

familiar with the names

Table 1-1 describes the
corresponding pathnames for R mode and V mode.

of these

libraries,

inadvertently use any of these names for your own libraries.

Shared Library Pathnames

Table 1-1

le

do

Library

R-mode File

V-mode File

PRIMOS (including
file system,
condition mechanism,

LIB>FTNLIB.BIN

LIB>PFTNLB.BIN

controllers,

semaphore handlers,

and IOCS)
Application LIB>APPLIB.BIN LIB>VAPPLB.BIN
In-memory sorts LIB>MSORTS>BIN LIB>VMSORT.BIN
Matrix LIB>MATHLB.BIN not available
Sort LIB>SRTLIB.BIN LIB>VSRTLI.BIN
Spool LIB>SPOOLS.BIN LIB>VSPOOS.BIN

you
you do
The BIND program may

not

If you get a runtime error message when you try to execute a program
that calls subroutines, BIND the program again. Then, after the LI
command, use MAP -UNDEFINED (or MAP 3 with SEG) to display the names of

Second Edition 1-12

J

A

SUBROUTINES AND LIBRARIES

any missing subroutines. If necessary, refer to the subroutines’
descriptions in the other volumes of this guide for information about
the libraries required by the subroutines. MAP -UNDEFINED, along with
other linking options, is explained in detail in the Programmer’s Guide
to BIND and EPFs and in Volume I of the Advanced Programmer’s Guide.
The MAP 3 option for SEG is explained in the SEG and LOAD Reference
Guide.

The loading process is different for BASIC/VM, which performs the
compiling, linking, 1loading, and execution within the special
environment it creates. For information about BASIC/VM, see the
BASIC/VM Programmer’s Guide.

SUBROUTINES AND ADDRESSING MODES

Some subroutine libraries are available in only some of the addressing
modes that Prime currently supports: R mode, V mode, and I mode. Most
subroutines are available only in V mode and I mode. However, a number
of older system subroutines exist only in R mode. R-mode subroutines
can be called only from R-mode programs. To compile a program written
in FTN in R mode, you must specify the compile option -32R or -64R.

All standard subroutines introduced with Revision 19.4 or later
revisions are invoked through direct entry calls, by means of dynts.
Direct entry calls execute subroutines within PRIMOS, and are faster
than other calls. Direct entry calls are available only in V mode and
I mode.

To find out which addressing modes a subroutine is available with, see
the subroutine’s description in one of the subsequent volumes of this
guide. For subroutines available in I mode, and many subroutines in V
mode, the usage descriptions are in PL/I notation. For certain
subroutines meant for use by FORTRAN programmers, the Usage
descriptions are written in FIN. For subroutines available only in R
mode, the usage descriptions are in FTN. Some Input-Qutput Control
System (IOCS) and applications library subroutines are meant to
interface with FTN programs; accordingly, these Usage descriptions are
written in FTN.

For more information about addressing modes, see the System
Architecture Reference Guide.

1-13 Second Edition

)

YD

2
Using Subroutines

INTRODUCTION

This chapter explains how to use the standard subroutines supplied by
Prime. It covers the following topics:

e How to call subroutines and functions
e How to specify arguments of subroutines and functions

e Data types used by subroutines and functions written in FORTRAN
and PL/I

e How to use and interpret key codes, argument codes, and error
codes

CALLING SUBROUTINES

Each of the calling languages discussed in chapters 3 through 9 of this
volume has its own statement for calling subroutines. For example,
PL/I uses a statement of the following form to call subroutines.

CALL subroutine (argumentl, argument2...):

2-1 Second Edition

SUBROUTINES, VOLUME I

Subroutine is the name of the subroutine called. The subroutine
accepts input from and returns output to the arguments specified as
argumentl, argument2, and so on. For example, the subroutine GVS$GET,
as called by the PL/I statement shown below, retrieves the value of a
variable named gvname and returns it to a variable named gvalue. The
argument size specifies the length in characters of gvalue, and code
receives the error code returned by GVSGET.

CALL GVSGET (GVNAME, GVALUE, SIZE, CODE);

For information about the call statement for a particular calling
language, see the chapter in this volume that describes how to call
subroutines from that language.

CALLING FUNCTIONS

Some of the modules described in the other volumes of this guide are
functions rather than subroutines. Functions differ from subroutines
in the way that they must be invoked by the calling program and in the
way that they return output to the calling program. A function accepts
an argument or arguments and returns a value, which can then be
assigned to a variable or used in expressions. To call functions, use
formats such as the following:

variable = function(argument or arguments);

For example, the function DELES$A, shown below, accepts two arguments
and assigns a value to the variable valuel:

valuel = DELE$A(argl, arg2):

You can also use a function with relational, arithmetic, or other
operators.

SUBROUTINE ARGUMENTS

Most subroutines expect to receive from the calling program one or more
arguments in a given order. If the subroutine receives fewer arguments
than it expects, a message such as POINTER FAULT or ILLEGAL SEGNO is
displayed when the program is executed. If too many arguments are
passed, the subroutine ignores the extra arguments.

Second Edition 2-2

J

> D

USING SUBROUTINES

Subroutines and the programs that call them need not be written in the
same language. However, the arguments that a program passes to a
subroutine or function must be of data types that correspond to the
data types expected by the subroutine or function. Chapters 3 through
9 of this volume describe how subroutine arguments must be declared in
different calling languages in order to be acceptable to subroutines
and functions. The following paragraphs describe the data types
commonly expected and returned by system subroutines and functions
written in PL/I and FTN.

PL/I Data Types

Subroutines and functions written in PL/I expect parameters and return
values of the following data types:

CHAR (n)
Also specified as CHARACTER (n), CHARACTER (n) NONVARYING.
Specifies a character string or array of length n. A CHAR(n)
string is stored as a byte-aligned string, one character per byte.
A byte is 8 bits.

CHAR (*)
Also CHARACTER(*), CHARACTER(*) NONVARYING. Specifies a character
string or array whose length is wunknown at the time of
declaration. A CHAR(*) string is stored as a byte-aligned string,
one character per byte.

CHAR (n) VAR
Also CHARACTER(n) VARYING. Specifies a character string or array
whose length can be a maximum of n characters. The first 2 bytes
(one halfword) of storage for a CHAR(n) VAR string contain an
integer that specifies the current string length; these are
followed by the string, one character per byte.

CHAR(*) VAR
Also CHARACTER(*) VARYING. Specifies a character string or array
whose maximum length is unknown at the time of declaration. The
first 2 bytes (one halfword) of storage for a CHAR(*) VAR string
contain an integer that specifies the current string length:;
these are followed by the string, one character per byte.

FIXED BIN
Also FIXED BINARY, BIN, FIXED BIN(15). Specifies a 16-bit
(halfword) signed integer.

FIXED BIN(31)
Specifies a 32-bit signed integer.

(n) FIXED BIN

Specifies an integer array of n elements. See below for more
information about arrays:

2-3 Second Edition

SUBROUTINES, VOLUME I

FLOAT BIN
Also FLOAT BIN(23), FLOAT. Specifies a 32-bit (one-word)
floating-point number.

FLOAT BIN(47)
Specifies a 64-bit (double-word) floating-point number.

BIT(1)
Specifies a logical (Boolean) value. A bit value of 1 means TRUE;
a value of 0 means FALSE.

BIT (n)
Specifies a bit string of length n. BIT(n) ALIGNED means that the
bit string is to be aligned on a halfword boundary.

POINTER
Also PTR. Specifies a POINTER data type. A pointer is stored in
three halfwords (48 bits). If the pointer will point only to

halfword-aligned data, it may occupy two halfwords (32 bits). The
item to which the pointer points is declared with the BASED
attribute (for example, BASED FIXED BIN).

POINTER OPTIONS (SHORT)

Same as POINTER except that it always occupies only two halfwords
and can point only to halfword-aligned data.

Note

When used as a parameter, POINTER can be used interchangeably
with POINTER OPTIONS (SHORT).

When used as a returned function value, POINTER OPTIONS (SHORT)
can be used in any high-level language except Pascal or
64V-mode C, which require returned pointers to be three
halfwords; in these cases, POINTER must be used. C in 32I
X-mode accepts only halfword-aligned, two-halfword pointers,
and therefore requires the use of POINTER OPTIONS (SHORT).

Declaring Arrays and Structures in PL/I

Sometimes an argument is defined as an array or a structure. For
example, the following DCL statement declares item as an array of ten
integers.

DCL ITEMS(10) FIXED BIN;

In the DCL statement above, you can replace the keywords FIXED BIN with
any data type. By default, arrays are indexed starting with the
subscript 1; the first integer in this array is ITEMS(1l).

Second Edition 2-4

J

J

N

USING SUBROUTINES

To declare an array with a starting subscript other than 1, use a range
specification, as for example:

DCL WORD(0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 to 1023, and its elements are
referenced by POINTER variables.

A structure is equivalent to a record in COBOL or Pascal. For example,
the following DCL statement declares a structure named FS_DATE.

DCL 1 FS_DATE,
2 YEAR BIT(7),
2 MONTH BIT(4),
2 DAY BIT(5),
2 QUADSECONDS FIXED BIN(15):

In the DCL statement above, the numbers 1 and 2 indicate the relative
level numbers of the items in the structure. Always declare the name
of the structure at level 1. After the level number, give the name of
the data item and its data type. In this example, the structure
occupies a total of 32 bits.

Since no names are given to data items in parameter lists, you can
declare the array ITEMS simply as (10) FIXED BIN. Similarly, you can
declare the structure FS_DATE as

(¢.., 1, 2 BIT(7), 2 BIT(4), 2 BIT(5), 2 FIXED BIN(15), ...)

FTN Data Types

Subroutines and functions written in FIN expect parameters and return
values of the following data types:

COMPLEX
Specifies a 64-bit element to hold a complex number, defined as
two 32-bit (REAL*4) entities, the first for its real and the
second for its imaginary part.

INTEGER*2
Also INTEGER. Specifies a 16-bit (halfword) signed integer. Bit
1 is the sign bit.

INTEGER*4
Specifies a 32-bit signed integer. Bit 1 is the sign bit.

2-5 Second Edition

SUBROUTINES, VOLUME I

LOGICAL
Specifies a logical (Boolean) value. Within a 16-bit halfword,
the first 15 bits must be 0, and the 16th bit indicates .FALSE.
with 0 and .TRUE. with 1.

REAL*4
Also REAL. Specifies a 32-bit signed floating-point number. Bit
1l is the sign bit. Bits 2 to 24 are the mantissa. Bits 25 to 32
are the exponent.

REAL*8
Also DOUBLE PRECISION. Specifies a 64-bit signed floating-point
number. Bit 1 is the sign bit. Bits 2 to 48 are the mantissa.
Bits 49 to 64 are the exponent.

Data Types Variants for FORTRAN

Other declarations in the Usage section suggest the elements for which
FTN has no data type:

BUFFER(1)
Given the data type of INTEGER*2, this shorthand declaration for
an array suggests a character string or array whose length is
unknown at the time of declaration (an equivalent to CHAR(*) in
PL/I). The wuser must DIMENSION the array with an adequate size.
If the size is known to be (n), then the variable declaration is
given as BUFFER(n).

LOC (variable)
Specifies the equivalent of a POINTER data type. This built-in
FORTRAN function automatically provides the prerequisite three
halfwords (48 bits) for the pointer.

Key Codes and Argument Codes

In calls to many subroutines, key codes and argument codes can be used
in place of numeric arguments. For example, in the subroutine call

CALL GPATHS (KS$INIA...other arguments...)

the key code K$INIA corresponds to the number 4 and tells GPATHS to
return the pathname of the user’s origin directory.

Files in the SYSCOM directory define which numbers the codes represent.
If the proper SYSCOM file is inserted in a program, the codes defined
in that file can be used by the program as arguments in calls to many
subroutines. For information about how to insert a SYSCOM file into a
program, see the chapter in this volume that explains how to call

Second Edition 2-6

J

r

LIRS

USING SUBROUTINES

subroutines from the program’s language. It is good practice to use
key codes and argument codes whenever possible.

Key codes are of the form KSyyyy, where yyyy is a string of up to four
characters. For example, K$SCURR is a key code. Key codes can be used
with the subroutines described in Volumes II and III of this guide.

Argument codes are of the form ASyyyy, where yyyy is a string of up to
four characters. For example, ASDEC is an argument code. Argument
codes are used in calls to application 1library subroutines; these

subroutines are described in Volume IV of this guide.

Key codes are associated with numeric values in the file
SYSCOM>KEYS.INS.language; argument codes are associated with numeric
values in the file SYSCOM>AS$KEYS.INS.language. In these file names,
language stands for an abbreviation designating the language of the
calling program. Table 2-1 1lists the abbreviations that <can be
substituted for language in the names of files in SYSCOM. Note that
programs written in COBOL, CBL, and BASIC/VM cannot use the keys and
codes defined in the SYSCOM files; in these languages, programs must
specify the numeric equivalents of the keys and codes.

Table 2-1
Language Abbreviations in SYSCOM File Names

Language Abbreviation

C cC
FTN, F77 FTN
Pascal PASCAL
PL/I PL1
PMA PMA

Some subroutines accept as a single argument a number of keys or key
codes linked by plus signs (+). For example, the subroutine SRCHS$S 1is
called by a statement of the following form.

CALL SRCHS (action+ref+newfill, ...other arguments...)
In this CALL statement, keys corresponding to the parameters action,
ref, and newfill must be linked by plus signs. The subroutine SRCHSS
accepts the sum of these three keys as a single argument. For example,
in the following call to SRCHS$S

CALL SRCHSS$ (KSRDWR+KS$ISEG+KS$SNDAM, . ..other arguments...)

the key codes KS$RDWR, K$ISEG, and KSNDAM are linked by plus signs (+)
into a single argument.

2-7 Second Edition

SUBROUTINES, VOLUME I

Standard Error Codes

Many subroutines include an argument that the subroutine sets to a
standard error code. The error code corresponds to a number reporting
on the success or failure of the call or on some other condition worth
noting.

Standard error codes are of the form ES$xxxx, where xxxx 1is any
combination of letters. For example, the error code

ESDVIU

corresponds to the number 39, which means Device in Use.

Files named SYSCOM>ERRD.INS.language, where language is an abbreviation
standing for the language of the calling program, associate standard
error codes with numbers. Table 2-1 above lists the abbreviations that
can be substituted for language in the names of files in SYSCOM.

Subroutines return the error code number whether or not you insert the
SYSCOM>ERRD.INS file. However, if you wish to intercept errors and
have your program write error messages, you should include the SYSCOM
file and refer to the error by its code rather than its number.

For more information about standard error codes, see Volume 0 of the
Advanced Programmer’s Guide.

HOW TO READ SYSCOM FILES

You can learn the numeric equivalent of a key code, argument code, or
error code by listing the SYSCOM file that defines the code for the
calling language that you are using. A SYSCOM file defines a code on a
line consisting of the code, the code’s numeric equivalent, and a
comment describing the significance of the code. A comment symbol (/*)
in front of a code invalidates the code. Codes used with the same
subroutine are grouped together in the SYSCOM file.

Figure 2-1 1lists the portion of SYSCOM>KEYS.INS.FTN that defines the
key codes that can be used by any FTIN program which invokes the
subroutine SRCHSS. For example, in Figure 2-1, KSRDWR is defined as
the equivalent of the number 3. As the comment following the key
definition indicates, you can use either the key K$RDWR or the number 3
as an argument of SRCH$$ to cause the subroutine to open a file for
reading and writing.

Second Edition 2-8

J

J

)

YD

X /*********************

X /*

X /* K$READ
X /* KS$SWRIT
K$SRDWR
KSCLOS
K$DELE
KS$EXST
K$BKUP
K$VMR

K$BKIO
KSGETU
KSRESV

PO X P X K XX

* k ok kkk
11, /*
12, /*
:3, /*
14, /*
:5, /*
16, /*
:7, /*
:20, /*
:20000, /*
:40000, /*
:100000, /%

USING SUBROUTINES

SRCH$$ kkhkkkkkkkhkkhkhkhkkkkhkhhkk

ACTION *kkkkk

OPEN FOR READ

OPEN FOR WRITE

OPEN FOR READING AND WRITING
CLOSE FILE UNIT

DELETE FILE

CHECK FILE’S EXISTENCE

OPEN FOR READ BY BACKUP UTILITY
OPEN FOR VMFA READING

OPEN FOR BLOCK MODE I/O
SYSTEM RETURNS UNIT NUMBER
reserved

Excerpt from SYSCOM>KEYS.INS.FTN

Figure 2-1

2-9 Second Edition

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

S

3
Calling Subroutines
From BASIC/VM

CALL FORMAT

Before a program written in BASIC/VM can call a subroutine, the program
must declare the data types of the subroutine’s parameters. To declare
the data types of a subroutine’s parameters in BASIC/VM, use a
statement of the following form:

SUB FORTRAN sub-name [(type, type...)]

In the SUB statement, only the FORTRAN-style data types INT, INT*4,
REAL, or REAL*8 can be declared. BASIC/VM supports only two types of
operand, strings and double-precision (64-bit) floating point.
However, the BASIC/VM compiler performs all conversions of BASIC/VM
operands to and from the subroutine argument types.

Note

A BASIC/VM program can call only those subroutines that expect
parameters of data types equivalent to INTEGER, INTEGER*2,
LOGICAL, INT*4, REAL, or REAL*8. The SUB FORTRAN statement
uses the type specifier INT to correspond to INTEGER,
INTEGER*2, or LOGICAL.

3-1 Second Edition

SUBROUTINES, VOLUME I

To call a subroutine from a program written in BASIC/VM, use the
following statement.

CALL sub—name [(argumentl, argument2 ...)]

Literals can be used as arguments in BASIC/VM subroutine calls.

External functions cannot be called as functions from BASIC/VM.
However, you can call most functions in this manual as subroutines,
using the CALL statement described above.

For more information about BASIC/VM, see the BASIC/VM Programmer’s
Guide.

USING NUMERIC EQUIVALENTS OF SYSCOM KEYS

BASIC/VM does not recognize the key codes, argument codes, and error
codes defined by files in the S8YSCOM directory. In calls to
subroutines, BASIC/VM programs must specify the numeric equivalents of
these keys and codes. To learn the numeric equivalent of a SYSCOM key
or code, list the SYSCOM file that defines the key or code. Chapter 2
of this volume explains which SYSCOM files define the key codes,
argument codes, and error codes for each calling language.

SYSTEM SUBROUTINES NOT RECOGNIZED BY BASIC/VM

Some of the FORTRAN subroutines in VAPPLB are not recognized by the
BASIC/VM compiler, and, therefore, cannot be called by BASIC/VM
commands. If a program that calls a subroutine in VAPPLB compiles
correctly but gives the runtime error message:

Entry name xxx not found

the subroutine is missing from the BASIC/VM compiler and must be
installed. Your System Administrator may install more subroutines from
VAPPLB (or user-written subroutines) in the BASIC/VM compiler, as
explained in the System Administrator’s Guide or the BASIC/VM
Programmer’s Guide.

DATA TYPES
Table 3-1 illustrates ways that FORTRAN and PL/I data types can be

represented in a SUB FORTRAN declaration in BASIC/VM. The BASIC/VM
numeric data type is REAL*8. When BASIC/VM interprets the CALL

Second Edition 3-2

J

)

D)

CALLING SUBROUTINES FROM BASIC/VM

statement, it converts all scalars and arrays to INT or REAL.

For information about each data type, see the chapter titled "Overview
of Subroutines™ in Volume II, III, or IV of this guide. The sections
that follow the table illustrate how arguments expected by subroutines
coded in FORTRAN or PL/I can be declared in BASIC/VM programs.

Table 3-1
Data Type Equivalents: BASIC/VM
Generic Unit Declared in PL/I FTN F77
SUB FORTRAN
statement
16 bits INT FIXED BIN INTEGER
(Halfword) FIXED INTEGER*2 INTEGER*2
BIN(15) LOGICAL LOGICAL*2
32 bits INT*4 FIXED INTEGER
(Word) BIN(31) INTEGER*4 INTEGER*4
LOGICAL
LOGICAL*4
Varying INT CHAR (n)
character VARYING
string
32 bits REAL FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precision) FLOAT
BIN(23)
64 bits REAL*8 FLOAT REAL*8 REAL*8
(Float double BIN(47)
precision)
Byte string INT CHAR (n) Integer CHARACTER
(Max. 32767) Array *n
Note

String arrays in BASIC/VM cannot be passed as arguments to
FORTRAN subroutines.

3-3 Second Edition

SUBROUTINES, VOLUME I

BASIC/VM SUB Statement: INT
FTN and F77: INTEGER*2
PL/I: FIXED BIN(15) or FIXED BIN

Use the data type INT in the BASIC/VM SUB FORTRAN statement to declare
the FIN and F77 data type INTEGER*2 and the PL/I data type FIXED
BIN(15) or FIXED BIN. In BASIC/VM, the wvariable or constant to be
passed is the normal numeric operand, which 1s double-precision
floating point, and is not declared.

For example, a BASIC/VM program that calls subroutine SRCHSS must
declare data types that correspond to the data types in the
subroutine’s DCL statement, as follows:

DCL SRCH$$ ENTRY (FIXED BIN, CHAR (32) VAR, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN);

The following BASIC/VM statement declares each of the parameters of
SRCH$$ as INT, which corresponds to the data types declared in the DCL
statement above.

40 SUB FORTRAN SRCH$$ (INT, INT, INT, INT, INT, INT)

The following BASIC/VM statements assign values to the variables that
are to be used as arguments of SRCHSS.

50 N =26
60 F$ = 'CTRLFL’
70 L =26
80 F=1
90 T=20

The argument N illustrates how BASIC/VM calling programs use numeric
arguments in place of SYSCOM keys. The value assigned to N is 6, the
sum of the key KS$SEXST (=6), which instructs SRCH$$ to verify the
existence of a file, and KSIUFD (=0), which instructs SRCH$$ to 1look
for the file in the directory to which the user is currently attached.
The argument F$ is assigned the name of the file for which SRCHSS is to
search (/CTRFL’). The values assigned to L, F, and T do not correspond
to SYSCOM keys or codes.

The following BASIC/VM statement calls subroutine SRCHS$$ with the

arguments defined above.

100 CALL SRCH$$(N,FS,L,F,T,C)

Second Edition 3-4

J

YD

CALLING SUBROUTINES FROM BASIC/VM

The variable C in the CALL statement above receives the standard error
code reported by SRCH$S.

BASIC/VM SUB Statement: INT
FTN: LOGICAL
F77: LOGICAL*2

Use the data type INT in the BASIC/VM SUB FORTRAN statement to declare
parameters of the data types LOGICAL or LOGICAL*2. In the BASIC/VM
program, variables or constants to be passed to the subroutine should
be used as normal numeric operands (not explicitly declared). They
have a value of 0 (false) or 1 (true).

For example, subroutine TEXTOS$ expects as parameters an integer array,
two INTEGER*2 variables, and a LOGICAL variable. A BASIC/VM program
that calls TEXTOS$ must declare data types that correspond to the types
expected by TEXTOS. Statement 50 below declares TEXTOS$ as a BASIC/VM
routine with four parameters of the data type INT.

50 SUB FORTRAN TEXTOS$ (INT, INT, INT, INT)

The following statements cause values to be assigned to the arguments
N$ and L1.

60 NS =7
70 PRINT
80 INPUT "ENTER NAME OF FILE TO BE CREATED: ", NS$
90 PRINT

100 L1 = LEN(NS)

The following statement calls subroutine TEXTOS.

110 CALL TEXTO$(N$, L1, L2, T)

The following statements specify conditional logic based on the wvalue
of T, the LOGICAL argument which TEXTO$ sets to 0 or to 1.

120 IF T <> 0 GOTO 210

130 REM

140 REM LOGICAL T IS FALSE
150 REM

160 PRINT "INVALID NAME - TRY AGAIN"
170 GOTO 80

180 REM

190 REM LOGICAL T IS TRUE

3-5 Second Edition

SUBROUTINES, VOLUME I

200 REM

210 IF T = 1 GOTO 240

220 PRINT "ERROR: TRY AGAIN"
230 GOTO 80

240 PRINT "LENGTH IS", L2

250 PRINT "TRUTH VALUE IS", T
260 PRINT "END OF RUN"

BASIC/VM SUB Statement: INT
PL/I: CHARACTER (n) NONVARYING

BASIC/VM can pass a character string to a subroutine or function
expecting a parameter of the type CHARACTER(n)NONVARYING, usually
declared CHARACTER(n). Declare the string INT in the BASIC/VM SUB
FORTRAN statement. The BASIC/VM program must pass the number of
characters expected by the subroutine.

For example, a BASIC/VM program that calls subroutine SPAS$$ must
declare data types that correspond to the data types in the following
DCL statement:

DCL SPAS$$ ENTRY (CHAR(6), CHAR(6), FIXED BIN);

The following BASIC/VM statement declares each of the parameters of
SPAS$$ as INT, which corresponds to the data types declared in the DCL
statement above.

20 SUB FORTRAN SPAS$$ (INT, INT, INT)

The following BASIC/VM statements assign values to the variables that
are to be used as arguments of SPAS$$. Note that each of the strings
to be passed to SPAS$$ consists of six characters, the number of
characters expected by SPASSS.

30 © ’ OWNSPW’
40 N = ’NOWNPN’

The following statement calls SPASS with the arguments defined above.

50 CALL SPASS (O,N,C)

In the CALL statement above, the variable C is the FIXED BIN parameter
and receives the error code returned by the subroutine.

Second Edition 3-6

J

J

YD

CALLING SUBROUTINES FROM BASIC/VM

BASIC/VM SUB Statement: INT*4

FTN: INTEGER*4

F77: INTEGER*4 or LOGICAL*4

PL/I: FIXED BIN(31)

Use the data type INT*4 in the BASIC/VM SUB FORTRAN statement to
declare parameters of the FTIN data type INTEGER*4, the F77 data types
INTEGER*4 and LOGICAL*4, and the PL/I data type FIXED BIN(31). 1In
BASIC/VM, the variable or constant to be passed is the normal numeric
operand, which is double-precision floating point, and is not declared.

For example, when invoked by a CALL statement, the subroutine RNUMSA
expects a parameter of any data type, followed by two INTEGER*2
parameters and an INTEGER*4 parameter. The following BASIC/VM
statement declares data types for the parameters of RNUMSA.

50 SUB FORTRAN RNUMSA (INT, INT, INT, INT*4)

The following statements assign values to variables that are to be used
as arguments of RNUMSA.

20 F$ = "ENTER A NUMBER'
30 L = 14
40 N =1

The following statement calls function RNUM$A, using arguments defined
in the statements given above.

60 CALL RNUMSA(FS$,L,N,V)

In the CALL statement above, V is the INTEGER*4 parameter and receives
the returned value of the subroutine.

BASIC/VM SUB Statement: INT or INT*4
FIN: Integer Arrays

An FTN integer array should be declared in the BASIC/VM SUB FORTRAN
statement as INT or INT*4, depending on the subroutine. Integer arrays
in FTN can contain either numbers or characters. In the BASIC/VM CALL
statement, the array should be called either as the array x(y), where x
is the variable name and y is the dimension, or as the string x$ with
the proper number of characters.

For example, the subroutine TIMDAT returns the date, the time, and

other system information. A BASIC/VM program must call TIMDAT twice to
collect all this information, because BASIC/VM cannot store both

3-7 Second Edition

SUBROUTINES, VOLUME I

characters and integers in a single structure. Thus, BASIC/VM must
call TIMDAT once to collect the integers in an array, and again to
collect the <characters in a string. The following data structure is
the PL/I equivalent of the array that BASIC/VM must use to collect
integers from TIMDAT:

1,
2 CHAR(6),

2,
3 FIXED BIN,
3 FIXED BIN,
3 FIXED BIN,
2,
3 FIXED BIN,
3 FIXED BIN,
2,
3 FIXED BIN,
3 FIXED BIN,
2 FIXED BIN,
2 FIXED BIN,
2 CHAR(32):

A BASIC/VM program which <calls TIMDAT must declare data types that
correspond to an array and to FIXED BIN. The final FIXED BIN parameter
of TIMDAT must be declared INT in the BASIC/VM SUB FORTRAN statement;
28 is the usual value assigned this parameter.

The following statement declares subroutine TIMDAT as a FORTRAN
subroutine with two parameters, each of the data type INT.

10 SUB FORTRAN TIMDAT (INT, INT)

Statement 20 below allocates an array, A, with 15 elements. Statement
30 calls subroutine TIMDAT to read information into array A.

15 REM COLLECT INTEGER DATA
20 DIM A(15)
30 CALL TIMDAT(A(), 28)

Statement 40 below writes 30 space characters into string AS$.
Statement 50 calls subroutine TIMDAT to read information into AS.

35 REM COLLECT CHARACTER DATA
40 A$ = SPA(30)
50 CALL TIMDAT (AS$,28)

Second Edition 3-8

J

YD

CALLING SUBROUTINES FROM BASIC/VM

The following statements display the numeric and alphabetic information
read into array A and string A$ by the two calls to TIMDAT.

60 PRINT "MONTH: ’:LEFT(AS$,2)

70 PRINT 'DAY: ’:MID(AS$,3,2)

80 PRINT ’YEAR: ' :MID(AS,5,2)

90 PRINT ’TIME IN MINUTES SINCE MIDNIGHT: ' :A(3)
100 PRINT 'TIME IN SECONDS: ’:A(4)

110 PRINT ‘TIME IN TICKS: ’ :A(5)

120 PRINT ‘LOGIN NAME: ‘:RIGHT(AS, 25)

Caution

Multidimensional arrays cannot be passed to FORTRAN from other
languages, because FORTRAN is the only language to use a
column-row format.

BASIC/VM SUB Statement: REAL

FTN and F77: REAL or REAL*4

PL/I: FLOAT BIN or FLOAT BIN(23)

Use the data type REAL in the BASIC/VM SUB FORTRAN statement to declare
parameters of the FTN and F77 data type REAL or REAL*4, and of the PL/I
data type FLOAT BIN(23), also known as FLOAT BIN. In BASIC/VM, the
variable or constant to be passed should be used as the normal numeric
operand, which is double-precision floating point, and is not declared.

BASIC/VM SUB Statement: REAL*§
FTN and F77: REAL*8
PL/I: FLOAT BIN(47)

Use the data type REAL*8 in the BASIC/VM SUB FORTRAN statement to
declare parameters of the FTN and F77 data type REAL*8 and of the PL/I
data type FLOAT BIN(47), also called FLOAT BIN. In BASIC/VM, the
variable or constant to be passed should be the normal numeric operand,
which is double-precision floating point, and is not declared.

BASIC/VM SUB Statement: INT
FTN and F77: INTEGER*2
PL/I: BIT(l) ALIGNED

The PL/I data type BIT(l) ALIGNED can be treated the same as the
INTEGER*2 data type, whose value is -1 if false. Declare parameters of
this type INT in the BASIC/VM SUB FORTRAN statement. Note that the
PL/I data type BIT(1l) cannot be passed from a BASIC/VM program.

3-9 Second Edition

9y

4
Calling Subroutines From C

CALL FORMAT

To call a subroutine from a program written in C, use a statement of
the following form:

sub-name ([argumentl, argument2,...,argumentn]):;

In this statement, sub-name is the name of the subroutine, and the
arguments in brackets are the arguments that the C program is to pass
to the subroutine. The arguments must be separated by commas and the
list of arguments must be delimited by parentheses. The data type of
each argument must be declared in the C program that calls the
subroutine.

To call a function from a program written in C, you can use a variety
of statements. For example, you can use the same type of statement

that you use to call a subroutine. You can also use a statement that
assigns the value of the function to a variable, such as:

value = function(argument):;
In the statement above, the variable value receives the value of the

subroutine.

4-1 Second Edition

SUBROUTINES, VOLUME I

The C program that calls a function must declare the data type of the
function, as well as the data types of the function’s arguments and of
the variable that receives the function’s value. The data type of the
function is the data type of the value that it returns. For example,
if function foo returns a double value, the function itself must be
declared double, such as:

double fool():

If variable value is to receive the value of foo, then value must also
be declared double, such as:

double value;
If the data type of the variable that receives the function’s value 1is
not declared, the C compiler assumes that the data type is int.

For more information about how to call subroutines and functions from
C, see the C User’s Guide.

The FORTRAN Storage Class

Any non-C subroutine called by a program written in C should be
declared as the FORTRAN storage class. If the subroutine is not
declared as the FORTRAN storage class, the C language by default
converts the CHAR and SHORT INT data types to INT, and the FLOAT data
type to DOUBLE. Declaring the subroutine as the FORTRAN storage class
prevents C from performing this conversion. All the examples in this
chapter use the FORTRAN storage class for PRIMOS subroutines.

See the C User’s Guide for information about accessing common blocks,
creating common blocks from C, transferring arguments in C, and passing
arrays by reference.

USING THE -OLDFORTRAN AND -NEWFORTRAN OPTIONS

When you compile programs in 64V mode and do not declare subroutines as
the FORTRAN storage class, you can use the compiler keywords
—~OLDFORTRAN and -NEWFORTRAN to tell the C compiler which language
interface to use. The -OLDFORTRAN option selects the old interface,
and the -NEWFORTRAN option selects the new interface. The 32IX-mode C
compiler supports only the new interface.

If you specify neither the -OLDFORTRAN nor -NEWFORTRAN option on the

command line, the new interface is selected by default. If the source
code is not written for the new interface, you must either change the

Second Edition 4-2

J

)

CALLING SUBROUTINES FROM C

source code to adopt the new interface conventions, or specify
-OLDFORTRAN on the command line when you invoke the compiler. The new
interface conventions are documented in Prime’s C User’s Guide.

It is good practice to use the -NEWFORTRAN interface, which 1is faster
and more flexible than the -OLDFORTRAN interface.
Note
When the o0ld interface 1is wused, the ampersand character (&)

must be placed in front of wvariables in calls to non-C
subroutines to cause the variables to be passed by reference.

USING THE —-NOCONVERT OPTION

If a C subroutine is being called from another Prime-supported language
such as FORTRAN or PL/I, the conversion of CHAR, SHORT, and FLOAT data
types does not occur. The C compiler, however, is not aware of this.
Therefore, the -NOCONVERT compiler option must be used to inform the C
compiler that data types of CHAR, SHORT, and FLOAT shculd not be
converted. For more information about data type conversion and the
-NOCONVERT option, see the C User’s Guide.

USING SYSCOM FILES

To enable a program written in C to use standard error codes, insert
the file SYSCOM>ERRD.INS.CC into the program by including the following
statement in the program:

#include <errd.ins.cc>

To enable a program written in C to use key codes, insert the file
SYSCOM>KEYS.INS.CC into the program by including the following
statement in the program:

#include <keys.ins.cc>

Subroutines in VAPPLB use argument codes in the form AS$yyyy. These
codes are associated with numbers in the file SYSCOM>ASKEYS.INS.CC. To
enable a program written in C to wuse argument codes, include the
following statement in the program:

#include <a$keys.ins.cc>

4-3 Second Editicn

SUBRQUTINES, VOLUME I

The BIND subcommand LI VAPPLB must be issued at load time.

DATA TYPES

Table 4-1 suggests ways that FORTRAN and PL/I data types can be
represented in C. For information about each data type, see the
chapter titled "Overview of Subroutines" in Volume II, III, or IV of
this guide.

Table 4-1
Data Type Equivalents: C
Generic Unit C PL/I FTN F77
16 bits short FIXED BIN INTEGER
(Halfword) FIXED INTEGER*2 INTEGER*2
BIN(15) LOGICAL LOGICAL*2
32 bits long FIXED INTEGER
(Word) int BIN(31) INTEGER*4 INTEGER*4
LOGICAL
LOGICAL*4
32 bits float FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precision) FLOAT
BIN(23)
64 bits double FLOAT REAL*8 REAL*8
(Float double BIN(47)
precision)
1 bit short BIT
BIT (1)
1 left- short BIT (1)
aligned bit ALIGNED
(Halfword)

Second Edition

J

YD

CALLING SUBROUTINES FROM C

Table 4-1 (continued)
Data Type Equivalents: C

Generic Unit C PL/I FTN F77
Bit string unsigned BIT (n)
int
16 bits char LOGICAL LOGICAL
(Halfword) LOGICAL*1 LOGICAL*1
Byte string char[n) CHAR (n) Integer CHARACTER
(Max. 32767) Array *n
Record struct CHAR (*)
VARYING

32 bits pointer pointer

(Two (32IX mode) OPTIONS

halfwords) (SHORT)

48 bits pointer pointer

(Three (64V mode)

halfwords)

Literal literal ASCII ASCII ASCII
string or string or character character character
character character string string string
array array

There are

Note

no equivalents in FTN or PL/I to the enumeration
C data type or to the void C data type.

The following sections suggest how FORTRAN and PL/I data types can
represented in C.

be

Second Edition

SUBROUTINES, VOLUME I

C: short int

FTN: INTEGER*2 or LOGICAL

F77: INTEGER*2 or LOGICAL*2
PL/I: FIXED BIN(15) or FIXED BIN

The C data type short int, also known as short, can be used as an
equivalent of the FTN data types INTEGER*2 and LOGICAL, of the F77 data
types INTEGER*2 and LOGICAL*2, and of the PL/I data type FIXED BIN
(15), also known as FIXED BIN.

For example, a C program that calls subroutine SRCH$$ must declare data
types that correspond to the data types in the DCL statement:

DCL SRCH$$ ENTRY (FIXED BIN, CHAR (32) VAR, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN)

The following C statement declares five variables as the data type
short.

short key, name_len, funit, type, code;

The following C statement declares that the subroutine SRCHS$$ is of the
FORTRAN storage class.

fortran srch$$();

The following C statements assign values to four variables which are to
be used as arguments of SRCHSS.

key = k$exst + k$iufd;

name_len = 6;
funit = 0;
type = 0;

The following C statement calls subroutine SRCHS, using arguments
defined in the program code above.

srch$$ (key, "ctrlfl", name_len, funit, type, code):

Second Edition 4-6

J

D

CALLING SUBROUTINES FROM C

C: long int
FTN: INTEGER*4

F77: INTEGER*4 or LOGICAL*4
PL/I: FIXED BIN(31)

The C data type long int, also known as long or int, can be used as an
equivalent of the FTIN and F77 data type INTEGER*4, of the F77 data type
LOGICAL*4, and of the PL/I data type FIXED BIN(31).

For example, the function RNUMS$A expects four parameters; the first
parameter can be any data type, and the remaining three must be
INTEGER*2, INTEGER*2, and INTEGER*4. C programs which call the

function RNUMSA must declare data types that correspond to those
expected by the function.

The following C statements declare data types for variables that are to
be used as arguments of RNUMS$A. The variable value is declared as int,
which corresponds to INTEGER*4.

static char msg[21] = "Please enter a number";
short msglen, a$dec;
int wvalue;

The following C statement declares that the subroutine RNUMS$A is of the
FORTRAN storage class.

fortran rnumSa();

The following C statements assign values to two of the variables that
are to be used in the call to RNUMS$A.

msglen = 21;
a$dec = 1;

The following C statement calls subroutine RNUMSA.

rnum$a (msg, msglen, a$dec, value);

C: literal string or character array
FIN, F77, and PL/I: ASCII Character Strings

A C program should pass a literal string or character array to
a FORTRAN or PL/I subroutine that expects an ASCII character string.

4-7 Second Edition

SUBROUTINES, VOLUME I

The example in the preceding section shows how the subroutine RNUMSA
can be called with an argument msg, which is defined as a string of
21 characters. The argument msg is declared in the example by the
following statement.

static char msg([21l] = "Please enter a number";

C: float
FTN and F77: REAL*4
PL/I: FLOAT BIN(23)

The C data type FLOAT can be used as an equivalent of the FTN and F77
data type REAL*4 and of the PL/I data type FLOAT BIN(23).

For example, a C program that calls function RANDSA must declare data
types that correspond to INTEGER*4 and REAL*4, the data types of the
parameters of RAND$A. The REAL*4 parameter of RANDSA can also be
declared REAL*8.

The following C statements declare three variables, seed and number,
that are to be used when RANDSA is called. The variable number is
declared as FLOAT, which corresponds to REAL*4.

int seed;
float number;
short k;

The following C statement declares function RANDSA as the FORTRAN
storage class and its value as the data type FLOAT.

fortran float rand$al():

The following C statements call function RANDSA to produce ten numbers
at random and to print the numbers.

seed = 1;
for (k=1; k<=10; k++)
{
number = rand$a (seed);
printf ("%e\n", number);
}

Second Edition 4-8

J

DI |

CALLING SUBROUTINES FROM C

C: double
FTN and F77: REAL*8
PL/I: FLOAT BIN(47)

The REAL*8 data type expected by FORTRAN subroutines is the FLOAT
BIN(47) data type in PL/I. These two data types can be declared as
double in C.

For example, the return value of function RANDSA (See the example in
the preceding section.) can be received in a REAL*8 variable declared

double in C. Such a variable, called number, can be declared as
follows:

double number:;

If the return value of the function is received in a variable declared
double, the function itself must be declared double, as follows:

fortran double rand$a():

C: short
PL/I: BIT, BIT(l), or BIT(1l) ALIGNED

The PL/I data type BIT or BIT(l) represents a logical (Boolean) value;
a bit value of 1 means TRUE and a value of 0 means FALSE. This data
type can be declared short in C.

The PL/I data type BIT(1l) ALIGNED specifies a bit-aligned halfword (16
bits). This type can also be declared short in C.

The C programmer must know which of the 16 bits in the short data value
is set by the function that returns the short value.

C: unsigned int

PL/I: BIT(n)

The PL/I data type BIT(n) specifies a bit string of length n. This
data type can be declared in C as unsigned int, which specifies a bit
string as represented by a machine word of 32 bits. There is no
control of the 1length of a bit string in C except by use of existing
data types.

4-9 Second Edition

SUBROUTINES, VOLUME I

C: char
FTN and F77: LOGICAL or LOGICAL*1l

The FTN and F77 data types LOGICAL and LOGICAL*1 can be declared in C
as char, with only the low order bit of the character being used.

For example, the function DELE$A returns a value to a variable which
must be declared as LOGICAL or a corresponding data type. The
following statement declares the variable log, which receives the
return value of DELESA, as type char, which corresponds to LOGICAL*1.
Note that a variable declared char in C can be evaluated
arithmetically. In this example, log, a char variable, is tested to
determine whether it is set to zero or to a nonzero value.

char log:;

DELESA expects two arguments of the data type INTEGER*2. The following
statements declare data types for these arguments and assign values to
them.

static char filename[7] = "ctrlfl";
short count = 6;

The first statement above declares an array, FILENAME, as type char,
and assigns the characters "ctrlfl" to the array; the data type of
this parameter of DELESA does not matter. The second statement above
declares the variable count as type short, and assigns the value 6 to
the variable.

The following statement declares the function DELE$A as the FORTRAN
storage class.

fortran short deleSa():

The following statement calls DELESA with the arguments declared above.

log = dele$Sa (filename, count);

Second Edition 4-10

J

D)

D

CALLING SUBROUTINES FROM C

The following "if...else" statement performs one of two substatements,
depending on whether the returned value of DELE$A (log) is zero or
nonzero.

if (log == 1)

printf ("file deleted successfully\n"):
else

printf ("no go\n"):

C: Array of Integers and Characters

FTN: Integer and Character Arrays

F77: CHARACTER*n

PL/I: CHAR(n)

Arrays expected by FORTRAN and PL/I subroutines should be declared as
an array of integers or as an array of characters in C, depending on
the type of array being passed. A FORTRAN integer array containing
both integer and character data can be declared in C as a structure of
elements each of which 1is separately declared as an integer or
character data type.

For example, a C program that calls subroutine TIMDAT, which returns
system and user information, can declare an array that contains both
integer and character data. The following C statement defines a data
type named arrayl; this data type is a structure consisting of eleven
fields, each of which is of the data type char or the data type short.
The char fields are to contain characters and the short fields are to
contain integers.

static struct arrayl
{
char mmddyy([6]:
short time_min;
short time_sec;
short time_tck:;
short cpu_sec:
short cpu_tck;
short disk_sec:
short disk_tck:;
short tck_sec:;
short user_num;
char username(31];
}:

4-11 Second Edition

SUBROUTINES, VOLUME I

The following C statement declares the variable intarray as of the data
type arrayl, as defined above.

static struct arrayl intarray:;

The following statement declares the variable num as SHORT and assigns
it a wvalue of 28. This value must be specified as the second argument
of TIMDAT.

short num = 28;

The following C statement declares TIMDAT as a FORTRAN subroutine.

fortran timdat();

The following C statement calls TIMDAT with intarray and num as
arguments.

timdat (intarray, num);

The following C statements print the information that TIMDAT has
returned to array intarray.

printf ("date is $.6s\n", intarray.mmddyy) :
printf ("seconds elapsed $d\n", intarray.time_sec);
printf ("ticks elapsed %d\n", intarray.time_tck):;
printf ("cpu seconds used %d\n", intarray.cpu_sec):;
printf ("cpu ticks %d\n", intarray.cpu_tck);
printf ("disk seconds used %d\n", intarray.disk_sec):
printf ("user name %.31s\n", intarray.username) ;

C: Two-element structure
PL/I: CHARACTER (*) VARYING

The PL/I data type CHARACTER(*)VARYING is implemented as a record
structure, providing a count of the number of characters in the
structure followed by the characters themselves. Figure 4-1
illustrates a CHAR(*)VAR record structure.

Second Edition 4-12

J

YD

CALLING SUBROUTINES FROM C

5|A]B|JC]|D]|E

Count Character String

Figure 4-1
CHAR(*) VAR Record Structure

In C, the struct and typedef statements declare data types that are
equivalent to the CHAR(*)VAR data type. For more information about
these statements, see the C User’s Guide.

Note

The PL/I type CHAR(n) VARYING represents a character string
whose length is given by the value n. This data type <can be
treated the same as CHAR(*) VARYING.

For example, a C program that calls subroutine GVS$GET must declare data
types that correspond to the data types in the subroutine’s DCL
statement, as follows:

DCL GVSGET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN);

The following C statements declare data types for variables that are to
be used as arguments of GVSGET. The struct statement defines a data
type, charvar, that corresponds to CHAR(*)VAR; charvar consists of a
count-of-characters element, declared SHORT, and a five-character
string. The static struct statements declare the variables varname and

varval to be of the type charvar; varname is assigned the character

count 4 and the string value ".MAX".

short varsize, code;
struct charvar
{
short nchars:
char stringl(5]:;
}:
static struct charvar varname = {4, ".max"};
static struct charvar varvalue;

4-13 Second Edition

SUBROUTINES, VOLUME I

The following C statement declares GVS$SGET as of the FORTRAN storage
class.

fortran gv$get():

The following statement assigns the value 5 to the variable varsize.
varsize = 5;

The following statement calls subroutine GVSGET with the arguments

defined above.

gv$get (varname, varvalue, varsize, code):;

C: pointer
PL/I: POINTER or POINTER OPTIONS (SHORT)

The C data type pointer can be used as an equivalent of the PL/I data
type POINTER, also known as PTR. A POINTER item is usually stored in
three halfwords (48 bits). If the POINTER item points only to
halfword-aligned data, it may occupy two halfwords (32 bits). The item
to which the POINTER item points is declared with the BASED attribute
(for example, BASED FIXED BIN).

The POINTER OPTIONS (SHORT) data type is the same as POINTER except
that it always occupies only two halfwords and can point only to
halfword-aligned data.

Note

When used as a parameter, POINTER can be used interchangeably
with POINTER OPTIONS (SHORT).

C in 32IX mode accepts only halfword-aligned, two-halfword
pointers, and therefore requires the wuse of POINTER OPTIONS
(SHORT). When used as a returned function value, POINTER
OPTIONS (SHORT) cannot be used in C in 64V mode, which requires
returned pointers to be three halfwords; in this case, POINTER
must be used.

Second Edition 4-14

J

YD

5

Calling Subroutines
From COBOL or CBL

CALL FORMAT

To call a subroutine from a program written in COBOL or CBL, use a CALL
statement of the following format:

CALL ’'sub-name’ [USING data-name-1 [, data-name-2] ...]

In the CALL statement, ’sub-name’ is the subroutine’s name enclosed by
single quotation marks. The data-names should be defined in the DATA
division with level-number 01 or 77. 1In COBOL or CBL, arguments cannot
be passed to or returned from a subroutine as literals.

External functions cannot be called from COBOL or CBL. However, most
functions in this guide can be called as subroutines, using the CALL
statement described above.

CBL incorporates features not supported by COBOL. For information
about CBL, see the COBOL 74 Reference Guide.

5-1 Second Edition

SUBROUTINES, VOLUME I

USING NUMERIC EQUIVALENTS OF SYSCOM KEYS

COBOL and CBL do not recognize the key codes, argument codes, and error
codes defined by standard files in the SYSCOM directory. 1In calls to
subroutines, COBOL and CBL programs must specify the numeric
equivalents of these keys and codes. To learn the numeric equivalent
of a SYSCOM key or code, list the SYSCOM file that defines the key or
code. Chapter 2 of this volume explains which SYSCOM files define the
key codes, argument codes, and error codes for each calling language.

DATA TYPES

Table 5-1 suggests ways that FORTRAN and PL/I data types can be
represented in COBOL or CBL.

Table 5-1

Data Type Equivalents: COBOL and CBL

Generic Unit CBL COBOL PL/I FTN F77
16 bits COMP COMP FIXED BIN INTEGER
(Halfword) PIC S9(1)- FIXED INTEGER*2 INTEGER*2
PIC S9(4) BIN(15) LOGICAL LOGICAL*2
32 bits COMP FIXED INTEGER
(Word) PIC S9(5)- BIN(31) INTEGER*4 INTEGER*4
PIC S9(9) LOGICAL
LOGICAL*4
32 bits COMP-1 FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precision) FLOAT
BIN(23)
64 bits COMP-2 FLOAT REAL*8 REAL*8
(Float double BIN(47)
precision)
Byte string DISPLAY DISPLAY CHAR (n) Integer CHARACTER
(Max. 32767) PIC A(n) PIC A(n) Array *n
PIC X(n) PIC X(n)
FILLER FILLER
Second Edition 5-2

)

J

CALLING SUBROUTINES FROM COBCL OR CBL

Table 5-1 (continued)
Data Type Equivalents: COBOL and CBL

Generic Unit CBL COBOL PL/I FTN F77
Byte string COMP-3 COMP-3 FIXED
(2 digits DECIMAL
per byte)
Record two-— two- CHAR (*)

element element VARYING

item item

Note

COBOL has no data types that correspond to the INTEGER*4, FIXED
BIN(31), REAL*4, REAL*8, or POINTER data types. CBL has no
data type that corresponds to POINTER.

The following paragraphs explain how arguments of these types must be
declared in COBOL programs that call subroutines. For more information
about each data type, see the chapter titled "Overview of Subroutines”
in Volume II, III, or IV of this guide.

CBL: COMP with PIC S9(1) to S9(4)

COBOL: COMP

PL/I: FIXED BIN or FIXED BIN(15)

FTN or F77: INTEGER*2

The COBOL data type COMP, signed or unsigned, can be used as an
equivalent of the FTN and F77 data type INTEGER*2 and of the PL/I data
type FIXED BIN, also called FIXED BIN(15).

The CBL data type COMP, with an item declared PIC S9(1) to PIC S9(4),
can be used as an equivalent of the data types INTEGER*2 and FIXED BIN.

For example, a COBOL or CBL program that calls subroutine TNOQUA must
declare parameters of the proper COBOL or CBL data types for TNOUA.

Subroutine TNOUA has two parameters, with the data types CHAR(*) and
FIXED BIN, as indicated by the following DCL statement:

DCL TNOUA ENTRY (CHAR(*), FIXED BIN):;

5-3 Second Edition

SUBROUTINES, VOLUME I

The following statements from the DATA DIVISION of a COBOL or CBL
program declare two variables, ERRBUFF and COQOUNTER, with data types
that correspond to CHAR(*) and FIXED BIN, respectively.

WORKING-STORAGE SECTION.
01 ERRBUFF PIC X (1) VALUE ""207’.
01 COUNTER COMP PIC S9(4) VALUE 1.

Note

You can omit the PIC S9(4) clause from declarations of the data
type COMP if you compile the program using the COBOL compiler.
However, the CBL compiler returns an OBSERVATION error message
if the PIC S9(4) clause is omitted from the COMP declarations.

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program calls TNOUA, specifying ERRBUFF and CQUNTER as arguments.

CALL ’'TNOUA’ USING ERRBUFF, COUNTER.

COBOL and CBL: COMP
FTN: LOGICAL
F77: LOGICAL*2

The COBOL and CBL data type COMP can be used as an equivalent of the
FTN data type LOGICAL and the F77 data type LOGICAL*2. Arguments of
this data type must have a value of 0 (false) or 1 (true).

For example, subroutine TEXTOS$ has four parameters, of the data types
integer array, INTEGER*2, INTEGER*2, and LOGICAL. The following
statements from the DATA DIVISION of a COBOL or CBL program declare
four variables, FILENAME, NAMELENGTH, TRUELENGTH, and TEXTOK, with data
types that correspond to the parameters of TEXTOS. The variable TEXTOK
is declared as COMP PIC S9(4), which corresponds to the data type
LOGICAL.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 FILENAME PIC X(32).

01 NAMELENGTH COMP PIC S9(4) VALUE 32.
01 TRUELENGTH COMP PIC S9(4).

01 TEXTOK COMP PIC S9(4).

Second Edition 5-4

J

J

A

CALLING SUBROUTINES FROM COBOL OR CBL

Note

You can omit the PIC S9(4) clause from the declaration of the
data type COMP if you compile the program using the COBOL
compiler. However, the CBL compiler returns an OBSERVATION
error message if the PIC S9(4) clause is omitted from the COMP
declarations.

The following statement from the COBOL program’s PROCEDURE DIVISION
calls subroutine TEXTOS.

CALL ’TEXTOS$’ USING FILENAME,NAMELENGTH, TRUELENGTH, TEXTOK.

CBL: COMP with PIC $9(5) through PIC S9(9)

FTN: INTEGER*4

F77: INTEGER*4 or LOGICAL*4

PL/I: FIXED BIN(31)

The CBL data type COMP, with PIC S9(5) through PIC S9(9), can be used
as an equivalent of the FTN data type INTEGER*4, of the F77 data types
INTEGER*4 and LOGICAL*4, and of the PL/I data type FIXED BIN({(31l).

For example, the function DATES$ returns the current date and time in
binary format as a 32-bit wvalue. In the function, this value is
declared as data type FIXED BIN(31l), as indicated by the following DCL
statement:

DCL DATES ENTRY RETURNS (FIXED BIN(31)):

The following statements from the DATA DIVISION of a CBL program
declare the variable FSDATE as COMP PIC S9(5), which corresponds to the
data type FIXED BIN(31):

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FSDATE COMP PIC S9(5).

The following statement from the PROCEDURE DIVISION of a CBL program
calls DATES, assigning its value to the variable FSDATE.

CALL ‘DATES’ USING FSDATE.

5-5 Second Edition

SUBROUTINES, VOLUME I

CBL: COMP-1
PL/I: FLOAT BINARY (23) or FLOAT BINARY
FTN and F77: REAL or REAL*4

The CBL data type COMP-1 can be used as an equivalent of the PL/I data
type FLOAT BINARY (23) and of the FTN and F77 data type REAL*4, which
can be specified simply as REAL.

For example, the function DTIMS$A outputs the disk time since login, in
centiseconds, to a variable that must be INTEGER*4; the function value
is disk time in seconds, and is returned to a variable that must be
REAL*4 or REAL*8. The following statements from the DATA DIVISION of a
COBOL or CBL program declare the output variable DSKTIM as COMP PIC
S9(5), corresponding to INTEGER*4, and the variable RTVAL as COMP-1,
corresponding to REAL*4.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DSKTIM COMP PIC S9(5).
01 RTVAL COMP-1.

The following statement from the PROCEDURE DIVISION of a COBOL or CBRL
program calls function DTIMSA; the function returns its value to
RTVAL.

CALL ’'DTIMS$A’ USING RTVAL.

CBL: COMP-2
PL/I: FLOAT BIN(47)
FTN and F77: REAL*S§

The CBL data type COMP-2 can be used as an equivalent of the PL/I data
type FLOAT BIN(47) and of the FTN and F77 data type REAL*8.

For example, the function FDATS$A accepts information from RDEN$$ about
the date 1in the format YYYYYYYMMMMDDDD and converts it into the format
DAY, MON DD YEAR (for example, FRI, JAN 16 1987). The returned value
of the function is the date in the format MM/DD/YY and must be received
in a REAL*8 variable. The following lines from a CBL program declares
the variable rtval as COMP-2, which corresponds to REAL*8.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 RTVAL COMP-2.

Second Edition 5-6

)

A

CALLING SUBROUTINES FROM COBOL OR CBL

The following statement from the PROCEDURE DIVISION of a CBL program
calls function FDATSA.

CALL 'FDATSA’ USING RTVAL.

COBOL and CBL: PIC 9(n), PIC X(n), or PIC A(n)
FTN: ASCII Character String

A COBOL or CBL program must declare an ASCII string as PIC 9(n), PIC
X(n), or PIC A(n) if it is to pass the string to a FORTRAN subroutine
or function.

For example, a COBOL or CBL program that calls subroutine SRCH$$ must
pass to SRCHSS six arguments, including a character string representing
a file name. The following DCL statement declares the data types
expected by SRCHS$S.

DCL SRCHS$$ ENTRY (FIXED BIN, CHAR(32) VAR, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

The following statements from such a program declare data types and
values for all of the arguments that are to be passed to SRCHSS. These
arguments include a variable, NAME, that is declared PIC X(6) and is
assigned the value ‘CTRLFL’, a file name.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 K-EXST COMP PIC S9(4) VALUE 6.

01 NAME PIC X(6) VALUE ’‘CTRLFL'.
01 NAMELENGTH COMP PIC S9(4) VALUE 6.

01 FUNIT COMP PIC S9(4) VALUE O.

01 TYPE COMP PIC S9(4) VALUE 0.

01 CODE COMP PIC S9(4).

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program calls subroutine SRCH$$ with the parameters defined by the DATA
DIVISION statements above.

CALL "SRCHS$$’ USING K-EXST, NAME, NAMELENGTH, FUNIT, TYPE, CODE.

5-7 Second Edition

SUBROUTINES, VOLUME I

Note

You can omit the PIC S$9(4) clause from declarations of the data
type COMP if you compile the program using the COBOL compiler.
However, the CBL compiler returns an OBSERVATION error message
if the PIC S9(4) clause is omitted from the COMP declarations.

CBL: PIC A(n) or PIC X(n)
COBOL: PIC A(n), PIC X(n), or PIC 9(n)
PL/I: CHARACTER (n)NONVARYING

A COBOL or CBL program can declare as PIC A or PIC X items of n
characters any data strings that are to be passed to subroutines or

functions expecting data of the PL/I data type CHARACTER (n)NONVARYING,
also called CHAR(n).

For example, subroutine uses three parameters, as declared in the
following DCL statement:

DCL SPAS$S ENTRY (CHAR(6), CHAR(6), FIXED BIN);

The following statements declare data types for three variables, OWNER,
NONOWN, and CODE, that are to be used as arguments in the call to
SPASSS$ from COBOL or CBL.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OWNER PIC X (6).
01 NONOWN PIC X(6).
01 CODE COMP PIC S9(1).

The following statement calls SPAS$$ with the arguments defined above.

CALL ’SPAS$$’ USING OWNER, NONOWN, CODE.

COBOL or CBL: COMP-3
PL/I: FIXED DECIMAL

The COBOL and CBL data type COMP-3 can be used as an equivalent of the
PL/I data type FIXED DECIMAL. COMP-3 represents a packed decimal item.
The PICTURE clause of a COMP-3 data type declaration can contain only
9, S, V, or P. FIXED DECIMAL represents a data item consisting of one
or more decimal digits, and which may include a decimal point or sign.

Second Edition 5-8

J)

DD

CALLING SUBROUTINES FROM COBOL OR CBL

For more information about these data types, see the COBOL 74 Reference
Guide and the PL/I Reference Guide.

COBOL or CBL: Array
FTIN: Integer Array

In COBOL or CBL, a table of the correct data type can be passed to a
FORTRAN subroutine expecting an integer array. An integer array in FIN
can contain either alphabetic or numeric information.

Multidimensional arrays cannot be passed to a FORTRAN subroutine.

For example, the subroutine TIMDAT returns an integer array containing
alphabetic and numeric information. A COBOL or CBL program that calls
TIMDAT must declare a separate array for each type of information. The
following statements from a COBOL or CBL program define separate arrays
for alphabetic and numeric characters.

DATA DIVISION.
WORKING-STORAGE SECTION
01 ARRAY.
05 TABLE PIC X(30).
05 CHAR-ARRAY REDEFINES TABLE OCCURS 15, PIC X(2).
05 NUM-ARRAY REDEFINES TABLE OCCURS 15, COMP PIC S9(4).
01 NUMBER COMP PIC S9(4) VALUE 15.

Note

You can omit the PIC S9(4) clause from declarations of the
data type COMP if you compile the program using the COBOL
compiler. However, the CBL compiler returns an OBSERVATION
error message if the PIC S9(4) clause is omitted £from the
COMP declarations.

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program calls subroutine TIMDAT.

CALL 'TIMDAT’ USING ARRAY, NUMBER.

In this CALL statement, ARRAY 1is the array of system and user
information returned by the subroutine, and NUMBER specifies the number
of elements in the array; this value must be less than or equal to 28.

The following DISPLAY statements from the PROCEDURE DIVISION display on

the terminal the information returned by TIMDAT. Each DISPLAY
statement refers to a field either of the alphabetic array or of the
numeric array. The final DISPLAY statement displays the first 6

5-9 Second Edition

SUBROUTINES, VOLUME I

characters of the 32 character user name returned by TIMDAT.

DISPLAY “MONTH IS: ', CHAR-ARRAY(1l).

DISPLAY ’'DAY IS: ', CHAR-ARRAY(2).

DISPLAY ‘YEAR IS: ', CHAR-ARRAY(3).

DISPLAY ’"MINUTES SINCE MIDNIGHT: ', NUM-ARRAY (4).

DISPLAY ’'TIME IN SECONDS: ', NUM-ARRAY(5).

DISPLAY ’'TIME IN TICKS: ', NUM-ARRAY(6).

DISPLAY ’'CPU TIME IN SECONDS: ', NUM-ARRAY (7).

DISPLAY 'CPU TIME IN TICKS: ', NUM-ARRAY(8).

DISPLAY 'DISK I/O TIME IN SECONDS: ', NUM-ARRAY(9).

DISPLAY 'DISK I/O TIME IN TICKS: ', NUM-ARRAY(10).

DISPLAY ’'TICKS PER SECOND: ‘, NUM-ARRAY (11).

DISPLAY 'USER-NUMBER: ', NUM-ARRAY(12).

DISPLAY ’LOGIN NAME: ', CHAR-ARRAY(13), CHAR-ARRAY(14),
CHAR-ARRAY (15) .

COBOL and CBL: Two-element group item
PL/I: CHARACTER (*)VARYING

The PL/I data type CHARACTER(*)VARYING is a record structure consisting

of a count-of-characters field and a field containing characters. In
COBOL or CBL, a comparable record structure must be declared as a
two—-element group item. The first element should be the

count-of-characters field and should be defined as a COMP data type.
The second element should be the character field and should be defined
as PIC X(n), where n 1is equal to the length of the character field.
The following group item illustrates these requirements.

01 CHAR-VAR.
05 CHAR-COUNT PIC S9(4) VALUE 5 COMP.
05 CHAR-STRING PIC X(5) VALUE ’'ABCDE’.

In the CHAR-COUNT field above, VALUE 5 specifies the number of
characters to be passed.

In the CHAR-STRING field above, PIC X(5) specifies that there are five
characters in the character string; the characters themselves, A, B,
C, D, and E, are specified after VALUE'.

For example, the subroutine COMSAB, which expands a line of text using

the PRIMOS abbreviation preprocessor, uses one CHAR(*) VAR and two
FIXED BIN parameters, as indicated by the following DCL statement:

DCL COM$AB ENTRY (CHAR(*) VAR, FIXED BIN, FIXED BIN);

Second Edition 5-10

J

YD

CALLING SUBROUTINES FROM COBOL OR CBL

The following lines from the DATA DIVISION of a COBOL or CBL program
define data types for variables that can be used for each of these
parameters.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 COMMAND.
05 CLENGTH PIC S9(4) VALUE 6 COMP.
05 CFIELD PIC X(6).

01 COMSIZE PIC S9(4) VALUE 6 COMP.

01 CODE PIC S9(4) COMP.

The following statement moves the characters "sl" to cfield.

MOVE ’SL’ TO CFIELD.

The following statement from the PROCEDURE DIVISION of a COBOL or CBL
program illustrates a call to subroutine COMS$SAB.

CALL ’'COMSAB’ USING COMMAND, COMSIZE, CODE.

5-11 Second Edition

-

D |

6
Calling Subroutines
From FORTRAN

CALL FORMAT

A subroutine can be called from a program written in FORTRAN 66 (FTN)
or FORTRAN 77 (F77) by a statement of the following form:

CALL sub-name [(argument [, argument]...)]

In the CALL statement, sub-name 1is the name of the subroutine and
argument can be either a literal or a data-name.

FTN and F77 can invoke functions in a variety of ways. For information
about how FORTRAN calls subroutines and functions, see the FORTRAN
Reference Guide or the FORTRAN 77 Reference Guide.

USING SYSCOM FILES

You can insert the SYSCOM file that defines error codes into a FORTRAN
program by including the following statement in the program:

$INSERT SYSCOM>ERRD.INS.FTN;

6-1 Second Edition

SUBROUTINES, VOLUME I

You can insert the SYSCOM file that defines key codes into a FORTRAN
program by including the following statement in the program:

$INSERT SYSCOM>KEYS.INS.FTN;

You can insert the SYSCOM file that defines argument codes into a
FORTRAN program by the following statement in the program:

SINSERT SYSCOM>ASKEYS.INS.FTN;

In F77, use the INCLUDE statement to 1insert SYSCOM files into a
program. The file name specified as the argument of the INCLUDE
statement must be enclosed by single quotation marks. For example, the
following statement inserts into a program the SYSCOM file that defines
argument codes.

INCLUDE ’‘SYSCOM>ASKEYS.INS.FTN'

For more information about the INCLUDE statement, see the Rev. 21
update of the FORTRAN 77 Reference Guide.

DATA TYPES

Table 6-1 suggests ways that FORTRAN and PL/I data types can be
represented in FTN and F77.

Second Edition 6-2

J

J

J

N D

CALLING SUBROUTINES FROM FORTRAN

Table 6-1
Data Type Equivalents: FORTRAN
Generic Unit FTN F77 PL/I
16 bits INTEGER FIXED BIN
(Halfword) INTEGER*2 INTEGER*2 FIXED
LOGICAL LOGICAL*2 BIN(15)
BIT (1)
ALIGNED
32 bits INTEGER*4 INTEGER FIXED
(Woxd) INTEGER*4 BIN(31)
LOGICAL
LOGICAL*4
32 bits REAL REAL FLOAT
(Float single REAL*4 REAL*4 BINARY
precision) FLOAT
BIN(23)
64 bits REAL*8 REAL*8 FLOAT
(Float double double double BIN(47)
precision) precision precision
Byte string Integer CHAR*n CHAR (n)
(Max. 32767) Array
Record Use Use CHAR (*)
Structure EQUIVALENCE EQUIVALENCE VARYING
Statement Statement

Note

Neither FIN nor F77 has data types that correspond to the PL/I
data types BIT, BIT(l), BIT(n), CHAR(n) VARYING, POINTER
OPTIONS (SHORT), or POINTERs.

The following sections suggest how PL/I data types can be declared in
FIN or F77. For more information about each data type, see the chapter
titled "Overview of Subroutines” in Volume II, III, or IV of this
guide.

6-3 Second Edition

SUBROUTINES, VOLUME I

FTIN or F77: INTEGER*2 or INTEGER*4
PL/I: FIXED BIN(15) or FIXED BIN(31)

The FIN and F77 data types INTEGER*2 and INTEGER*4 can be used as
equivalents of the PL/I data types FIXED BIN(15) and FIXED BIN(31),
respectively.

By default, FTN treats as INTEGER*2 any data type declared simply as
INTEGER. To make FTN treat the INTEGER data type as INTEGER*4, use the
-INTL (integer long) option every time you compile an FTN program. For
example, to compile program LOGICAL.FTN so that INTEGER is interpreted
as INTEGER*4, execute the following command.

OK, FTN LOGICAL.FTN -INTL

By default, F77 treats as INTEGER*4 any data type declared simply as
INTEGER. To make F77 treat the INTEGER data type as INTEGER*2, use the
—-INTS (short integer) option every time you compile an F77 program.
For example, to compile program LOGICAL.F77 so that INTEGER is
interpreted as INTEGER*2, execute the following command.

OK, F77 LOGICAL.F77 -INTS

Although the data type INTEGER is valid in FTIN and F77, it is good
practice to declare all integer arguments as either INTEGER*2 or
INTEGER*4.

For example, a program written in FTN or F77 that calls the subroutine

TISMSG must declare data types that correspond to the data types
declared for the subroutine in the following DCL statement:

DCL TIS$MSG ENTRY (FIXED BIN(15), FIXED BIN{(3l), FIXED BIN(31),
FIXED BIN(31));

The following statements from an FTN or F77 program declare
corresponding data types for the four parameters of TISMSG:

INTEGER*2 RESERV
INTEGER*4 CONNECT, CPU, IO

Second Edition 6-4

J

D)

CALLING SUBROUTINES FROM FORTRAN

The following statement from an FTN or F77 program calls TI$MSG with

the four arguments whose data types are declared above.

CALL TISMSG (RESERV, CONNECT, CPU, IO):

FTN: LOGICAL

F77: LOGICAL*2

PL/I: FIXED BIN or FIXED BIN(15)

The FTN data type LOGICAL and the F77 data type LOGICAL*2 can be used
as equivalents of the PL/I data type FIXED BIN and FIXED BIN(15).

For example, the subroutine BREAKS expects a parameter of the data type
FIXED BIN, as indicated by the following DCL statement:

DCL BREAK$ ENTRY (FIXED BIN);

Any variable that is to be used in the call to BREAKS$ must be declared
LOGICAL*2, the F77 equivalent of FIXED BIN. For example, the following
statement from a program written in F77 declares the variable logic as
LOGICAL*2.

LOGICAL*2 LOGIC

The program then calls subroutine BREAKS$:

CALL BREAKS (LOGIC)

FTN and F77: INTEGER*2

PL/I: BIT(1l) ALIGNED

The FTN and F77 data type INTEGER*2 can be used as an equivalent of the
PL/I data type BIT(l) ALIGNED. If the argument is declared in the PL/I
program as BIT(1l) ALIGNED, it can be treated as a 16-bit integer, with
a value of 0 for false and -32768 for TRUE.

For example, an FTN or F77 program that calls function IDCHK$ must
declare data types for the parameters of IDCHK$ that correspond to the
following:

DCL IDCHK$ ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT (1))

6-5 Second Edition

SUBROUTINES, VOLUME I

Note that BIT(l) values returned by functions are always ALIGNED.
The following statement from an FTN or F77 program declares variable

return as INTEGER*2; return could thus be used to receive the returned
value of IDCHKS.

INTEGER*2 return

FTN and F77: REAL or REAL*4
PL/I: FLOAT BIN or FLOAT BIN(23)

The FIN and F77 data type REAL, or REAL*4, can be used as an equivalent
of the PL/I data type FLOAT BIN, or FLOAT BIN(23).

FTN and F77: REAL*8
PL/I: FLOAT BIN(47)

The FTN and F77 data type REAL*8 can be used as an equivalent of the
PL/I data type FLOAT BIN(47).

FTN and F77: Two-element record, defined by EQUIVALENCE statement
PL/I: CHARACTER(*)VARYING

The PL/I data type CHARACTER(*)VARYING 1is implemented as a record
structure, consisting of a count of characters followed by the
characters themselves. Figure 6-1 illustrates the record’s structure.

5|]A|B]J]C]|D]J|E

Count Character String

Figure 6-1
CHAR(*) VAR Record Structure

In FTN and F77, the corresponding structure is a two-element record.
The record consists of an INTEGER*2 element containing a count of the
characters in the record and a field containing a character string.
This field can be CHARACTER*n in F77, or INTEGER*2 in FTN, and should
contain the characters to be passed.

Second Edition 6-6

J

D

DD

CALLING SUBROUTINES FROM FORTRAN

The EQUIVALENCE statement can be used to create such a record by
assigning values to the two elements of the array. For example, the
following FTN code sets up a two-element array that corresponds in
structure to the CHARACTER(*)VARYING data type of PL/I.

INTEGER*2 STRING(10), LENGTH
INTEGER*2 VARSTRING(11)

EQUIVALENCE (LENGTH, VARSTRING(1))
EQUIVALENCE (STRING(1l), VARSTRING(2))
STRING (1) = 'MY’

STRING(2) = 'FI’
STRING(3) = 'LE’
LENGTH = 6

Figure 6-2 illustrates this record’s structure.

LENGTH | STRING

A

VARSTRING -------====nnnnmm= >

Figure 6-2
The Record VARSTRING

In the code given above, VARSTRING is declared as an array of eleven
characters. The first EQUIVALENCE statement declares the first element
of VARSTRING equal to the wvariable LENGTH. The second EQUIVALENCE
statement declares elements 2 through 11 of VARSTRING equal to elements
1 through 10, respectively, of an array named STRING. The characters
'MYFILE’ are assigned to array STRING, two characters to an element.
The value 6 is assigned to LENGTH because six characters are assigned
to STRING. The effect of this code is to make VARSTRING a two-element
record that corresponds in structure to the CHAR*VARYING data type of
PL/I.

In F77 all of STRING can be assigned at once, as follows.

INTEGER*2 LENGTH, VARSTRING(11)
CHARACTER*20 STRING

EQUIVALENCE (LENGTH, VARSTRING(1))
EQUIVALENCE (VARSTRING (2), STRING)
STRING(1:6) = "MYFILE’

LENGTH = 6

6-7 Second Edition

SUBROUTINES, VOLUME I

For more information about the FORTRAN EQUIVALENCE statement, see the
FORTRAN Reference Guide or the FORTRAN 77 Reference Guide.

For example, suppose a program written in FTN or F77 1is to call
subroutine GVS$GET. The program must declare data types for the
parameters of GVSGET that correspond to the data types declared for the
subroutine in the following DCL statement:

DCL GVSGET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN)

The following FTN statements declare that two CHAR(*)VAR arrays, VARNAM
and VARVAL, consist of eleven elements each, and that each element 1is
of the data type INTEGER*2.

INTEGER*2 VARNAM(11)
INTEGER*2 VARVAL(11)

VARNAM and VARVAL are each to consist of an element containing a count
of characters and a ten-element field containing the characters. The
following statement defines these elements of VARNAM and VARVAL:

INTEGER*2 LEN1l, STR1(10), LEN2, STR2(10)

The preceding statement declares as INTEGER*2:
e The character count (LENl) of VARNAM

e Each of the ten elements of (STR1(10)), the character field
of VARNAM

e The character counter (LEN2) of VARVAL

e Each of the ten elements of (STR2(10)), the character field
of VARVAL

The following statement declares as INTEGER*2 the second FIXED BIN
parameter of GV$GET:

INTEGER*2 CODE

The first EQUIVALENCE statement below declares that LENl corresponds to
the first element of VARNAM. The second EQUIVALENCE statement pairs
elements of VARNAM with elements of STRl: the second element of VARNAM
corresponds to the first element of STR1, the third element of VARNAM
corresponds to the second element of STRI1, and so on.

Second Edition 6-8

J

3N

DD

CALLING SUBROUTINES FROM FORTRAN

EQUIVALENCE (LEN1, VARNAM(1))
EQUIVALENCE (VARNAM(2), STR1(1l))

Figure 6-3 illustrates the effect of the EQUIVALENCE statements above.

LEN1 STR1
P

LEN1 STR1(1) STR1(2) STR1(3) STR1(4) STR1(S) STRi(6) STR1(7) STR1(8) STR1(9) STR1(10)
or or or or or or or or or or or
VARNAM(1) | VARNAM(2) | VARNAM(3) | VARNAM(4) | VARNAM(5) | VARNAM(6) | VARNAM(7) | VARNAM(B) | VARNAM(9) | VARNAM(10) | VARNAM(11)

VARNAM

Figure 6-3
The Array VARNAM

The first EQUIVALENCE statement below declares that LEN2 corresponds to
the first element of VARVAL. The second EQUIVALENCE statement pairs
elements of VARVAL with elements of STR2: the second element of VARVAL
corresponds to the first element of STR2, the third element of VARVAL
corresponds to the second element of STR2, and so on.

EQUIVALENCE (LEN2, VARVAL(1l))
EQUIVALENCE (VARVAL(2), STR2(1))

Figure 6-4 illustrates the effect of the EQUIVALENCE statements above.
If an array is specified in an EQUIVALENCE statement without a
subscript, the subscript is assumed by default to be (1).

LEN2 STR2
p——
LEN2 STR2(1) STR2(2) STR2(3} STR2(4) STR2(5) STR2(6) STR2(7) STR2(8) STR2(9) STR2(10)
or or or or or or or or or or or
VARVAL(1) VARVAL(2) VARVAL(3) VARVAL(4) | VARVAL(S) VARVAL(6) VARVAL(7) VARVAL(8) VARVAL(9) | VARVAL(10) | VARVAL(11)
VARVAL
Figure 6-4

The Array VARVAL

The following statement calls subroutine GVS$GET with the arguments
defined above; note that the third argument, declared as a FIXED BIN
parameter, can be expressed as the numeric literal 20.

6-9 Second Edition

SUBROUTINES, VOLUME I

CALL GVSGET (VARNAM, VARVAL, 20, CODE)

In F77, the parameters of GVSGET can be declared as follows:

INTEGER*2 CODE, LEN1, LEN2, VARLEN
CHARACTER*20 STR1, STR2

INTEGER*2 VARNAM(11)

INTEGER*2 VARVAL(11)

EQUIVALENCE (LEN1, VARNAM(1))
EQUIVALENCE (LENZ2, VARVAL(1l))
EQUIVALENCE (VARNAM(2), STR1(1))
EQUIVALENCE (VARVAL(2), STR2(1))

The following statement calls GVSGET with the arguments defined in the
code above.

CALL GVSGET (VARNAM, VARVAL, VARLEN, CODE)

F77: CHARACTER*n
FTN: Integer Array
PL/I: CHARACTER (n)NONVARYING

The F77 data type CHARACTER*n can be used as an equivalent of the PL/I
data type CHARACTER (n)NONVARYING, usually declared as CHARACTER(n) .

FTN can pass short integer arrays to subroutines expecting parameters
of the type CHARACTER(n). Use one array element for each two
characters to be passed. Thus, the dimension of the integer array
should be one-half the value of the (n) in CHARACTER(n), rounded up.

For example, an FTN program that calls subroutine TIMDAT must declare
data types that correspond to the data types declared for the
subroutine in the following DCL statement:

DCL TIMDAT (l1...., FIXED BIN);

The following statements declare data types for the parameters of
TIMDAT that correspond to the data types declared in the preceding DCL
statement:

INTEGER*2 STRING(28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME, .TIMEl, TIME2, NAME (3)

Second Edition 6-10

y

DI |

CALLING SUBROUTINES FROM FORTRAN

The preceding statements declare the following as INTEGER*2.

Each of the 28 elements of array STRING,

The variable NUM,

Each of the three elements of array DATE,

The variables TIME, TIMEl, and TIME2, and
Each of the three elements of the array NAME.

The following EQUIVALENCE statements subdivide array STRING into five
fields, each of which holds separate items of system information as
returned by TIMDAT:

EQUIVALENCE (STRING(1l), DATE)
EQUIVALENCE (STRING(4), TIME)
EQUIVALENCE (STRING(5), TIMEl)
EQUIVALENCE (STRING(6), TIME2)
EQUIVALENCE (STRING(13), NAME)

The five equivalence statements equate the values of DATE, TIME, TIME],
TIME2, and NAME with specified elements in array STRING. The three
elements of array DATE are equated with the first three elements of
array STRING, TIME is equated with the fourth element of array STRING,
and so on. Thus the ASCII and numeric characters of system and wuser
information returned by subroutine TIMDAT are all assigned to different
elements of array STRING.

The following statement calls subroutine TIMDAT.
CALL TIMDAT (STRING, NUM)
Note
Variables declared as CHARACTER*n are not necessarily aligned

on word boundaries. Thus, passing CHARACTER*n parameters to
FTN subroutines may cause serious errors.

PL/I: POINTER

Neither FIN nor F77 supports a pointer data type. PL/I subroutines
that expect this data type should not be called from FORTRAN. Only
experienced programmers should attempt to pass the expression LOC (name)
to a non-PL/I subroutine that expects a pointer.

There is no convenient FORTRAN data type for storing a 48-bit pointer.
Currently, most Prime system subroutines use 32 bits of the pointer
available, ignoring the extra 16 bits if they are present. FORTRAN can
create only two-word pointers using LOC (name) .

6-11 Second Edition

SUBROUTINES, VOLUME I

FORTRAN cannot directly handle a pointer returned to it. If you want
to use a pointer that has been returned to a program written in FTN or
F77, receive the pointer in a variable declared INT*4, and use the
resulting value as an argument of MOVEWS$ to gain access to the data
pointed at.

Second Edition 6-12

AN

7
Calling Subroutines
From Pascal

CALL FORMAT
Before a Prime subroutine or function can be <called by a Pascal
program, it must be declared as a procedure or a function. To declare

a subroutine or a function as a procedure, use a statement of the
following format:

PROCEDURE sub-name[([VAR] arg:typel:; [VAR] arg:typel...)];EXTERN;

The keyword EXTERN must be added to the end of the PROCEDURE or
FUNCTION declaration for any procedure or function that is compiled
separately from the Pascal calling program.

To call a subroutine as a procedure from a program written in Pascal,
use a statement of the following format:

sub-name [(argument [,argument]...)];

In the Pascal procedure statement, the element sub—-name must be the
name of a subroutine, and the arguments can be data names or constants.

7-1 Second Editicn

SUBROUTINES, VOLUME I

To declare a subroutine as a function in a program written in Pascal,
use a FUNCTION statement of the following format:

FUNCTION function-name[([VAR] arg: type [;I[VAR] arg:typel...)]: type:
EXTERN;

To call a function, use statements similar to the following:

X := function(data...):;

IF function(data...) = X THEN ...:

Note

Any arguments that are supplied or changed by the subroutine
must be declared as variable parameters, preceded by the
reserved word VAR. These arguments are described as OUTPUT
parameters or INPUT/OUTPUT parameters in the subroutine
descriptions in the other volumes of this guide.

USING SYSCOM FILES

You can insert the SYSCOM file that defines error codes into a Pascal
program by including the following statement in the CONST section of
the program:

$INCLUDE ’SYSCOM>ERRD.INS.PASCAL';

You can insert the SYSCOM file that defines key codes into a Pascal
program by including the following statement in the CONST section of
the program:

$INCLUDE ’SYSCOM>KEYS.INS.PASCAL’;

You can insert the SYSCOM file that defines argument codes into a
Pascal program by including the following statement in the CONST
section of the program:

%$INCLUDE ’SYSCOM>ASKEYS.INS.PASCAL';

Second Edition 7-2

J

J

D)

CALLING SUBRQUTINES FROM PASCAL

DATA TYPES

Table 7-1
in Pascal.

suggests how PL/I and FORTRAN data types can be represented

Table 7-1
Data Type Equivalents: Pascal
Generic Unit Pascal PL/I FTN F77
16 bits INTEGER FIXED BIN INTEGER
(Halfword) Enumerated FIXED INTEGER*2 INTEGER*2
BIN(15) LOGICAL LOGICAL*2
32 bits LONGINTEGER FIXED INTEGER
(Word) BIN(31) INTEGER*4 INTEGER*4
LOGICAL
LOGICAL*4
32 bits REAL FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precision) FLOAT
BIN (23)
64 bits LONGREAL FLOAT REAL*8 REAL*8
(Float double BIN (47)
precision)
1l left- BOOLEAN BIT (1)
aligned bit ALIGNED
(Halfword)
Bit string SET BIT (n)
Byte string CHAR CHAR (n) Integer CHARACTER
(Max. 32767) PACKED Array *n
ARRAY[1..n]
OF CHAR

Y D

Second Edition

SUBROUTINES, VOLUME I

Table 7-1 (continued)
Data Type Equivalents: Pascal

Generic Unit Pascal PL/I FTN F77
Varying STRING([n] CHAR (n)

character STRING VARYING

string CHAR (*)

VARYING

48 bits pointer POINTER

(Three

halfwords)
Record RECORD Structure
Structure

The following sections suggest how FORTRAN and PL/I data types can be
declared in Pascal. For more information about each data type, see the
chapter titled OVERVIEW OF SUBROUTINES in Volume II, III, or IV of this
guide.

Boolean Values

Some functions return Boolean (true/false) values through FIXED BIN
parameters. In Pascal, these parameters should be declared as INTEGER.

Subroutines that are written in FORTRAN and return Boolean values

return the Boolean values through the LOGICAL data type. In Pascal,
declare these parameters as INTEGER.

Second Edition 7-4

,
"D

J

)

N D

CALLING SUBROUTINES FROM PASCAL

Pascal: INTEGER

PL/I: FIXED BIN(15)

FTN: INTEGER, INTEGER*2, or LOGICAL
F77: INTEGER*2 or LOGICAL*2

The Pascal data type INTEGER can be used as an equivalent of the PL/I
data type FIXED BIN(15) (also called FIXED BIN); of the FTN data types
INTEGER, INTEGER*2, and LOGICAL; and of the F77 data types INTEGER*2
and LOGICAL*2.

For example, a Pascal program that calls the subroutine SRCH$$, which
is written in PL/I, must declare for the parameters of SRCHS$$ the data
types that correspond to the data types expected by the subroutine, as
declared in the following DCL statement:

DCL SRCHS ENTRY (FIXED BIN, CHAR(32) VAR, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the PL/I data types declared for the parameters of
SRCH$$ in the DCL statement above.

TYPE
NAMETYPE = PACKED ARRAY[1l..8] OF CHAR;

PROCEDURE SRCHS$S (KEY : INTEGER;
FILENAME : NAMETYPE;
NAMELENGTH : INTEGER;
FILEUNIT : INTEGER;
FILETYPE : INTEGER;
VAR CODE : INTEGER); EXTERN;

The PROCEDURE statement declares five parameters of SRCHS as INTEGER,
the Pascal data type that corresponds to the PL/I data type FIXED BIN.
The PROCEDURE statement also declares the second parameter as NAMETYPE;
the preceding TYPE statement declares NAMETYPE as equivalent to PACKED
ARRAY[1..8] OF CHAR, which corresponds to CHAR(32) VAR. The programmer
selects for NAMETYPE the length that is likely to be needed (here, 8).

Pascal: LONGINTEGER
PL/I: FIXED BIN(31)

FTN: INTEGER*4

F77: INTEGER, INTEGER*4, LOGICAL, or LOGICAL*4

The Prime Pascal data type LONGINTEGER can be used as an equivalent of
the PL/I data type FIXED BIN(31l), of the FTN data type INTEGER*4, and
of the F77 data types INTEGER, INTEGER*4, LOGICAL, and LOGICAL*4. The
LONGINTEGER data type is a Prime extension to ANSI and ISO standard
Pascal.

7-5 Second Edition

SUBROUTINES, VOLUME I

For example, a Pascal program that calls the subroutine RNUMSA, which
is written in FORTRAN, must declare the INTEGER*4 parameter of RNUMS$A
as LONGINTEGER. The parameter declarations in subroutine RNUMSA are as
follows.

INTEGER*2 msg(l), msglen, numkey
INTEGER*4 value

The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the FORTRAN data types declared for the parameters
of RNUMSA in the subroutine description above.

TYPE
MSGTYPE = PACKED ARRAY[1..14] OF CHAR;
PROCEDURE RNUMSA (MSG : MSGTYPE;
MSGLEN : INTEGER;
NUMKEY : INTEGER;
VAR VALUE : LONGINTEGER) ; EXTERN;

MESSAGE, the first parameter of RNUMSA, is declared as MSGTYPE, which
corresponds to PACKED ARRAY[1..14] OF CHAR; the array can be of any
length required to accommodate the message. The second and third
parameters are declared as INTEGER, which correspond to the FORTRAN
data type INTEGER*2. The fourth parameter is declared as LONGINTEGER,
which corresponds to the FORTRAN data type INTEGER*4.

Pascal: REAL
PL/I: FLOAT BIN, FLOAT BIN(23)
FTN and F77: REAL or REAL*4

The Pascal data type REAL can be used as an equivalent of the PL/I data
types FLOAT BIN (also called FLOAT BIN(23)), and of the FTIN and F77
data types REAL and REAL*4. When a Pascal program calls a subroutine
that uses FLOAT BIN, REAL, or REAL*4 parameters, it must declare these
parameters as REAL. Constants passed as real arguments to FORTRAN
functions should be in scientific format (x.xEyy).

For example, a Pascal program that <calls the function RAND$SA must
declare for each parameter of RANDSA the data type that corresponds to
the data type declared for the parameter in the function. Function
RANDSA has two parameters, a seed value which is used to generate
random numbers, and a return value (rt_val) which is assigned the value
of each random number generated. The seed value and return value must
be declared as INTEGER*4 and REAL*4, respectively. The return value
can also be declared REAL*8.

Second Edition 7-6

' J

J

Yy D

CALLING SUBROUTINES FROM PASCAL

In Pascal, the following VAR and FUNCTION statements declare Pascal
data types that correspond to the data types expected by the function.
The parameter seed must be declared REAL in Pascal.

VAR
SEED1, THISONE : REAL;
INDEX : INTEGER;
FUNCTION RANDSA (VAR SEED : REAL) : REAL; EXTERN;

BEGIN
SEED1 := 1.2;
FOR INDEX := 1 TO 10 DO
BEGIN
THISONE := RANDSA(SEED1) ;
WRITELN (INDEX, ’:’, THISONE):;
END

The FUNCTION statement declares the function’s return value and the
seed value seed as real numbers. This is necessary because the return
value of function RANDSA is a real number.

Pascal: LONGREAL

PL/I: FLOAT BIN(47)

FTN and F77: REAL*S8

The Prime Pascal data type LONGREAL can be used as an equivalent of the
PL/I data type FLOAT BIN(47) and of the FORTRAN data type REAL*8. The
LONGREAL data type 1is a Prime extension to ANSI and ISO standard
Pascal.

For example, the return value of function RANDSA can be received by a
REAL*8 variable, declared LONGREAL in Pascal. The function can be
called as in the example in the preceding section, with the variable

that is to receive the return value, thisone, declared LONGREAL, as
follows:

THISONE : LONGREAL;

The return value must also be declared LONGREAL in the function
declaration, as follows:

FUNCTION RANDSA (VAR SEED : REAL) : LONGREAL; EXTERN;

7-7 Second Edition

SUBROUTINES, VOLUME I

Pascal: BOOLEAN or SET OF 0..x
PL/I: BIT(1l) ALIGNED or BIT(n)

The Pascal data type BOOLEAN can be used as an equivalent of the PL/I
data type BIT(1l) ALIGNED. In Pascal, the PL/I types ‘0’B and "1'B can
be read as FALSE and TRUE, respectively.

If the n of a BIT(n) data type is greater than 1, this data type
corresponds to the Pascal data type SET OF 0..x. The base type of SET
OF 0..x must be an INTEGER subrange starting at 0, with x equal to
n - 1. For example, a PL/I data type BIT(ll) can be declared in Pascal
as SET OF 0..10; a BIT(48) data type can be declared as SET OF 0..47;
and so on.

Whatever the n of a BIT(n) data type, if the BIT data items are
elements of a structure, all the adjacent bits can be summed into a
single SET.

If the n of a BIT(n) data type is 16 or if the number of bits in a
structure totals 16, you can declare the parameter as an INTEGER.

For example, a Pascal program that calls subroutine UIDSBT must declare
for the parameter of UIDS$BT the data type that corresponds to the data
type declared for the parameter in the following DCL statement:

DCL UIDS$BT ENTRY (BIT(48) ALIGNED);

As the value of (n) in this BIT(n) declaration is greater than 1, the
Pascal program can declare the parameter as SET OF 0..47. The
following TYPE statement defines a non-standard data type, BITSET, as
equivalent to SET OF 0..47; the following PROCEDURE statement declares
UIDSBT as a Pascal procedure whose parameter is data type BITSET:

TYPE
BITSET = SET OF 0..47;
PROCEDURE UIDSBT (VAR BITS : BITSET); EXTERN;

Note
The data type BOOLEAN can also be declared for parameters of

the type BIT(16) ALIGNED or for parameters whose description
states that only the most significant bit is used.

Second Edition 7-8

J

3 3

CALLING SUBROUTINES FROM PASCAL

Pascal: PACKED ARRAY[l..n] OF CHAR
PL/I: CHARACTER(n)

FTN: Integer Array

F77: CHARACTER*n

The Pascal data type PACKED ARRAY{l..n] OF CHAR can be used as an
equivalent of the PL/I data type CHARACTER(n) NONVARYING, also called
CHARACTER(n) or CHAR(n). The CHAR(n) parameter must be passed an array
that contains exactly n characters.

The Pascal data type PACKED ARRAY[1l..n] OF CHAR also corresponds to an
FTN integer array, and to the F77 data type CHARACTER*n.

A function that returns any of these data types cannot be called from
Pascal, because Pascal functions cannot return arrays.
Multidimensional arrays should not be passed between FORTRAN and
Pascal, because columns and rows will be reversed.

For example, a Pascal program that calls the subroutine DELE$A, which
is written in FORTRAN, must declare the subroutine’s INTEGER*2
parameter as PACKED ARRAY[l..n] OF CHAR. The parameter declarations in
the subroutine include the following statements:

INTEGER*2 name(l), namlen
LOGICAL log

When declared as INTEGER*2, the variable name (l) represents an array or
character string whose length is unknown at the time of declaration.
The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the PL/I data types in the subroutine description of
DELESA:

TYPE
NAMETYPE = PACKED ARRAY(1l..8] OF CHAR;
VAR

The following FUNCTION statement declares DELES$A as a Pascal function
with parameters of the data types NAMETYPE and INTEGER; the FUNCTION
statement also declares that the value of the function, when executed,
is an INTEGER:

FUNCTION DELESA(FILNAM : NAMETYPE;
LEN : INTEGER) : INTEGER; EXTERN;

7-9 Second Edition

SUBROUTINES, VOLUME I

Pascal: STRING[n]
PL/I: CHARACTER (n) VARYING

The Pascal data type STRING[n] can be used as an equivalent of the PL/I
data type CHARACTER(n) VARYING. The STRING[n] data type is a Prime
extension of ANSI and ISO standard Pascal.

Note

Some system subroutines (such as SRCHS) that expect a
parameter of the type CHAR(n) VAR may require you to declare
the parameter as PACKED ARRAY[1l..n] OF CHAR. If an error
occurs when you declare the parameter STRING[n], declare the
parameter as PACKED ARRAY.

In the Pascal data type STRING[n], the value of n, which specifies the
data type’s maximum length, can be any integer up to 32767. The Pascal
data type must have the same maximum length as the PL/I data type to
which it corresponds.

For example, a Pascal program that calls subroutine ACS$SET must declare
for each parameter of ACS$SET the data type that corresponds to the data
type declared for the parameter in the following DCL statement. This
DCL statement declares the second parameter of ACSSET as CHAR(128) VAR.

DCL ACSSET ENTRY (FIXED BIN, CHAR(128) VAR, PTR, FIXED BIN);

The following TYPE statement defines the data type STRING7 as
equivalent to the standard Pascal data type STRING[7] (Note that
STRING7 could be declared any length up to 128.). The PROCEDURE
statement declares NAME, the second parameter of ACS$SET, as equivalent
to STRING7.

TYPE
STRING7 = STRING([7];

PROCEDURE ACSSET (KEY : INTEGER;
NAME : STRING7;
PTR : ACL_PTR:;
VAR CODE : INTEGER); EXTERN;

Second Edition 7-10

J J

r CALLING SUBROUTINES FROM PASCAL

Pascal: STRING or STRING[n]
PL/I: CHARACTER(*) VARYING

The Prime Pascal data types STRING or STRING[n] can be used as an
equivalent of the PL/I data type CHARACTER(*) VARYING. The data type
STRING is a Prime extension to ANSI and ISO standard Pascal. An
argument declared as a STRING, with no declared maximum length, can be
up to 80 characters long.

A STRING is implemented as a structure that contains a count of the
characters in the structure followed by the characters themselves, as
shown in the diagram below.

5|A|BJC|D]|E

Count Character String

Figure 7-1
(CHAR(*) VAR Record Structure

CHARACTER (*) VARYING is identical to the CHARACTER(n) VARYING data
type, except that it has no specified maximum length, whereas
CHARACTER (n) VARYING has a maximum length specified by n.

A Pascal program that calls GVSGET must declare for each parameter of
GVSGET the data type that corresponds to the data type declared for the
parameter in the following DCL statement:

DCL GVSGET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN);

The following TYPE and PROCEDURE statements declare Pascal data types
that correspond to the PL/I data types declared for the parameters of
GVSGET in the DCL statement above:

TYPE
CHARVAR = STRING([4]:
PROCEDURE GVSGET (NAME : CHARVAR:;
VAR VALUE : CHARVAR;
LENGTH : INTEGER;
VAR CODE : INTEGER); EXTERN;
r The TYPE statement defines data type CHARVAR as equivalent to the

standard Pascal data type STRING[4]. The PROCEDURE statement declares
the first two parameters of GVSGET as CHARVAR, and the second two

’F‘

7-11 Second Edition

SUBROUTINES, VOLUME I

parameters as INTEGER, the Pascal data type that corresponds to the
PL/I data type FIXED BIN.

Pascal: pointer
PL/I: POINTER

The Pascal data type pointer can be used as an equivalent of the PL/I
data type POINTER, also known as PTR. A pointer is stored in three
halfwords (48 bits). The item to which the pointer points is declared
in PL/I with the BASED attribute (for instance, BASED FIXED BIN).

Although all Pascal pointers are three-halfword pointers, a subroutine
that uses the two-halfword PTR OPTIONS (SHORT) type can be called from
Pascal, provided that the pointer points to halfword-aligned data.
However, a Pascal pointer cannot be used within a structure 1if the
pointer is declared in a PL/I routine as OPTIONS (SHORT) .

You can <call functions that return PTR OPTIONS (SHORT) from Pascal only
by some method such as the following: declare a variable as a record
with two variants, LONGINTEGER and pointer. Declare the function with
LONGINTEGER as the data type of the returned value. Your Pascal
program can use the returned value through the pointer variant. For
example, the following code shows how function STRS$AL can be called
from Pascal in this manner:

TYPE

PTR = ~INTEGER;

FAKE = RECORD

CASE BOOLEAN OF
FALSE: (LI : LONGINTEGER) ;
TRUE: (PT : PTR)
END;

VAR

F : FAKE;

CODE : INTEGER;

FUNCTION STRSAL (RESERVED1 : INTEGER;
BLOCK_SIZE : LONGINTEGER;
RESERVEDZ : INTEGER;
VAR CODE : INTEGER) : LONGINTEGER; EXTERN;

BEGIN
F.LI := STRSAL(0, 2, 0, CODE);
WRITELN (/ LONGINT VALUE: ’, F.LI);
F.PT" := 0;

WRITELN(’F.PT~ : ’, F.PT");
IF (CODE = ESALSZ) OR (CODE = E$ROOM) OR (CODE = E$HPER) THEN
WRITELN (’ STANDARD ERROR CODE RETURNED') ;
WRITELN (' CODE: ’, CODE);
END.

Second Edition 7-12

J J

CALLING SUBROUTINES FROM PASCAL

When a
it must declare this parameter as pointer.
ACSSET uses a POINTER argument, as indicated by the
statement:

Pascal program calls a subroutine that uses a POINTER argument,
For example, the subroutine
following DCL

DCL ACS$SET ENTRY (FIXED BIN, CHAR(128) VAR, PTR, FIXED BIN):
The following TYPE statement defines special data types that can be
used to declare data types for the parameters of AC$SET. Among these
special data types 1is the type ACL_PTR, which corresponds to the
pointer data type "“ACLTYPE:
TYPE
STRING7 = STRING([7];
RANGETYPE = 1..2;
ACL_PTR = ~ACLTYPE:;
ACLTYPE = RECORD
VERSION : INTEGER;
ENTRY_COUNT : RANGETYPE;
ENTRIES : ARRAY[RANGETYPE] OF STRING:;
END ;

parameters of
declared as

The following VAR statement declares data types for the
ACS$SET. Among these parameters is THISPTR, which 1is
ACL_PTR, a pointer data type:

VAR
KEY : INTEGER;
ACLNAME : STRING7;
THISPTR : ACL_PTR;
ERRCODE : INTEGER;
ACL : ACLTYPE;

ACSSET as a Pascal
in data type to the data

The following PROCEDURE statement declares
procedure, with parameters that correspond
types declared in the DCL statement above:

PROCEDURE ACS$SET (KEY INTEGER;
NAME : STRING7;
PTR ACI_PTR;
VAR CODE® : INTEGER); EXTERN;

3 9

Second Edition

SUBROUTINES, VOLUME I

The following statement calls ACSSET with arguments that correspond in
data type to the data types declared in the DCL statement above. The
third argument, THISPTR, is of the data type pointer:

ACS$SET (KEY, ACLNAME, THISPTR, ERRCODE):;

Pascal: RECORD
PL/I: Structure

The Prime Pascal data type RECORD can be used as an equivalent of a
PL/I structure. The data types of the Pascal RECORD fields must
correspond to the data types of the members of the PL/I structure.

When a Pascal program calls a subroutine that uses a structure, it must
declare this structure as a RECORD parameter. For example, a Pascal
program can call the subroutine TIMDAT, which is written in PL/I, to
read system and user information into a Pascal record.

TIMDAT expects two parameters, a PL/I structure and a FIXED BIN data
item. The structure can be declared in Pascal as a record consisting
of 11 different fields. The FIXED BIN parameter must be declared
INTEGER in Pascal; 28 is the usual value assigned this parameter.

The following statements define the data type tabletype, corresponding
to the PL/I structure expected by TIMDAT:

TYPE
TABLETYPE = RECORD
MMDDYY : PACKED ARRAY[1l..6] OF CHAR;
TIME_MIN : INTEGER;
TIME_SEC : INTEGER;
TIME_TCK : INTEGER;
CPU_SEC : INTEGER:;
CPU_TCK : INTEGER;
DISK_SEC : INTEGER;
DISK_TCK : INTEGER;
TCK_SEC : INTEGER;
USER_NUM : INTEGER;
USERNAME : PACKED ARRAY[1..32] OF CHAR
END;

The following statement declares the variable table as the type
tabletype:

VAR
TABLE : TABLETYPE;

Second Edition 7-14

J

N D

CALLING SUBROUTINES FROM PASCAL

The following PROCEDURE statement declares subroutine TIMDAT as a
Pascal procedure with two parameters, one as data type tabletype and
one as INTEGER:

PROCEDURE TIMDAT (VAR ARR : TABLETYPE;
SIZE : INTEGER):; EXTERN;

In the following Pascal code, the call:

TIMDAT (TABLE, 28):

reads the contents of the system and user information into a record of
11 fields. The following statements display this information.

BEGIN
TIMDAT (TABLE, 28);
WITH TABLE DO

BEGIN
WRITELN (’'DATE IS ', MMDDYY) ;
WRITELN (MINUTES USED ’, TIME_MIN) ;
WRITELN (/ SECONDS ELAPSED ’, TIME_SEC) ;
WRITELN (/ TICKS ELAPSED ’,TIME_TCK) ;
WRITELN (' CPU SECONDS USED ' ,CPU_SEC):
WRITELN (' CPU TICKS ’,CPU_TCK) ;

WRITELN (‘DISK SECONDS USED ’,DISK_SEC):
WRITELN (/DISK TICKS USED " ,DISK_TCK) ;
WRITELN (TICKS PER SECOND ' ,TCK_SEC)

WRITELN (/' USER NUMBER ’ ,USER_NUM) ;
WRITELN (' USER NAME ' ,USERNAME) ;
END

END.

7-15 Second Edition

3

8
Calling Subroutines
From PL/I

CALL FORMAT

Programs written in PL/I must declare as external procedures any
subroutines that they call. In PL/I, subroutine declarations are of
the following form:

DECLARE sub-name EXTERNAL ENTRY([(type [,typel...)]:

In the DECLARE statement, sub-name is the name of the subroutine to be
called, and type 1is the data type of an argument to be passed to the
subroutine.

Subroutines are called by statements of the following form:

CALL sub-name [(argument, [,argument]...)];

In the CALL statement, argument may be either a constant or a data
name.

8-1 Second Edition

SUBROUTINES, VOLUME I

PL/I programs must also declare any functions that they are to call.
Function declarations are of the following form:

DECLARE function-name EXTERNAL ENTRY[(type ...)] RETURNS (type):

PL/I can call a function using a statement that evaluates the function
and assigns 1its value to a variable:; such statements are of the
following form:

X = function-name([(identifier ...)];

PL/I can also call a function using a control statement, such as an
IF/THEN statement, which performs a specified action if the function is
of a specified value. Such statements are of the following form:

IF function[(identifier...)] = 0 THEN ...action;

Note

In this chapter, the term PL/I stands for both full PL/I and
PL/I Subset G (PL/I-G).

THE OPTIONS (SHORTCALL) DECLARATION

The OPTIONS (SHORTCALL) declaration calls PMA procedures with the PMA

instruction JSXB instead of the more common PCL instruction. A
procedure call of this type is faster than one using PCL. However, the
called procedure must be written to expect this kind of <call. As of

Rev. 20.2, the only system subroutines that can and must be declared in
this way are MKONU$ and ALOCSS.

The OPTIONS (SHORTCALL) declaration is of the following form:

DECLARE procedure-name EXTERNAL ENTRY [(argl [,arg2]...)]
OPTIONS (SHORTCALL [(stack-size)]):

In the DECLARE statement, stack-size specifies the extra space needed
for the calling procedure’s stack. The default size is 8, but the
descriptions of MKONU$ and ALOC$S explain which stack size to specify.
This call does not create a new stack for storage, as does PCL. The
calling procedure’s stack space is used. Thus it may be necessary to
specify stack size in the declaration in order to enlarge the calling

Second Edition 8-2

J

J

YD

CALLING SUBROUTINES FROM PL/I

stack. For example, MKONU$ requires a 28-word stack, so the user’s
stack must be large enough to accommodate this requirement. If the
stack is not large enough, the return from the subroutine will cause
unpredictable error messages.

Arguments can be used with the SHORTCALL option. The computer will set
up the L register to point to an array containing the addresses of the
arguments, or, 1if there 1is only one argument, to the address of the
argument itself. No type checking is done. Both MKONU$ and ALOCSS
take more than one argument.

USING SYSCOM FILES

The SYSCOM file that defines error codes can be inserted in a PL/I
program by including the following statement in the program before the
subroutine declaration:

$INCLUDE ’‘SYSCOM>ERRD.INS.PL1’;

You can insert the SYSCOM file that defines key codes in a PL/I program
by including the following statement before the subroutine declaration:

3INCLUDE ’'SYSCOM>KEYS.INS.PL1l';

You can insert the SYSCOM file that defines argument codes in a PL/I
program by including the following statement in the program before the
subroutine declaration:

3 INCLUDE ’SYSCOM>ASKEYS.INS.PL1’.

DATA TYPES

Many PRIMOS subroutines are written in a version of PL/I. Moreover,
most of the usage descriptions in the Subroutines Reference Guide use
PL/I terminology. To declare and call these subroutines from PL/I, use
the same terminology.

Some subroutines, however, are written in FORTRAN, and some of these
have usage sections that use FORTRAN terminology. Most subroutines
that use FORTRAN terminology are described in Volume IV.

Table 8-1 summarizes the argument types of FORTRAN subroutines and
functions that can be called from PL/I.

8-3 Second Edition

SUBROUTINES,

VOLUME I

Table 8-1
Data Type Equivalents: PL/I
Generic Unit PL/I FTN F77
16 bits FIXED BIN INTEGER
(Halfword) FIXED INTEGER*2 INTEGER*2
BIN(15) LOGICAL LOGICAL*2
32 bits FIXED INTEGER
(Word) BIN(31) INTEGER*4 INTEGER*4
LOGICAL
LOGICAL*4
32 bits FLOAT REAL REAL
(Float single BINARY REAL*4 REAL*4
precision) FLOAT
BIN(23)
64 bits FLOAT REAL*8 REAL*8
(Float double BIN(47)
precision)
Byte string CHAR (n) Integer CHARACTER
(Max. 32767) Array *n

The following sections explain how these argument types relate to PL/I.
For more information, see the chapter titled "Overview of Subroutines”
in Volume II, III, or IV of this guide.

PL/I: FIXED BIN or FIXED BIN(15)
FIN: INTEGER, INTEGER*2
F77: INTEGER*2

The PL/I data type FIXED BIN(15), also called FIXED BIN, can be used as
an equivalent of the FTN and F77 data type INTEGER*2.

For example, a PL/I program that calls subroutine RNUMS$A must declare

data types that correspond to the types in the subroutine’s
description, as follows:

INTEGER*2 msg(l), msglen, numkey
INTEGER*4 value

Second Edition 8-4

~

J

DD

CALLING SUBROUTINES FROM PL/I

The following statement in the PL/I program declares corresponding PL/I
data types:

DCL RNUMSA EXTERNAL ENTRY (CHAR(14), FIXED BIN, FIXED BIN,
FIXED BIN(31)):

The following PL/I statement inserts the file SYSCOM>ASKEYS.PL1l into
the PL/I program; this file makes it possible to use argument keys as
arguments in the call to RNUMS$SA:

%$INCLUDE ’SYSCOM>ASKEYS.PL1l’;

The following PL/I statement declares the variable numvalue as FIXED
BIN(31); this variable is to be used as the INTEGER*4 parameter of
RNUMSA:

DCL NUMVALUE FIXED BIN(31):

The following PL/I statement calls subroutine RNUM$A with the arguments
defined above:

CALL RNUMSA ('ENTER A NUMBER’, 14, AS$DEC, NUMVALUE) ;

PL/I: FIXED BIN(31)
FTN: INTEGER*4
F77: INTEGER, INTEGER*4, LOGICAL, LOGICAL*4

The PL/I data type FIXED BIN(31l) can be used as an equivalent of the
FTN data type INTEGER*4 and of the F77 data types INTEGER, INTEGER%*4,
LOGICAL, and LOGICAL*4.

For example, a PL/I program that calls subroutine RANDSA must declare
data types that correspond to the types in the function’s description,
as follows:

INTEGER*4 seed
REAL*8 rt_val
C rt_val can also be declared REAL*4

8-5 Second Edition

SUBROUTINES, VOLUME I

The following PL/I statement declares the variable seed as FIXED
BIN(31), the PL/I data type that corresponds to INTEGER*4. The
statement also initializes seed with the value 1. This variable is to
be used as the argument of RANDSA.

DCL SEED STATIC FIXED BIN(31) INITIAL (1)

The following PL/I statement declares the variable return as FLOAT, the
PL/I data type that corresponds to REAL*4. This variable is to receive
the return value of function RANDSA.

DCL RETURN FLOAT;

The following PL/I statement declares function RANDS$A with parameters
of data types that correspond to the data types declared in the
function description above; note how the seed parameter is declared
FIXED BIN(31l), the PL/I data type that corresponds to INTEGER*4.

DCL RANDS$SA EXTERNAL ENTRY (FIXED BIN(31)) RETURNS (FLOAT):

The following statements call RANDS$A with the arguments declared above:

DCL INDEX FIXED BIN;

DO INDEX = 1 TO 10;
RETURN = RANDS$A(SEED) ;
PUT SKIP LIST (REALY4):;

END;

PL/I: FLOAT BIN or FLOAT BIN(23)
FTN and F77: REAL or REAL*4

The PL/I data type FLOAT BIN, also known as FLOAT or FLOAT BIN(23), can
be used as an equivalent of the FTN and F77 data types REAL or REAL*4.
Constants passed to a FORTRAN function that expects REAL arguments
should be in scientific format (x.xE+yy).

For an illustration of how to call a function that returns a REAL*4
value, see the preceding section.

PL/I: FLOAT BIN(47)
FTN and F77: REAL*8

The PL/I data type FLOAT BIN(47) can be used as an equivalent of the

Second Edition 8-6

J)

J

)

D

CALLING SUBROUTINES FROM PL/I

FTN and F77 data type REAL*8. Data of this type should be in
scientific format (x.xE+yy).

For example, the section about the FIXED BIN(31l) data type above
contains an example of a call to function RANDSA. The variable that
receives the return value of this function can be declared REAL*8, or
in PL/I, FLOAT BIN(47). Thus, in the example, the variable return
could also be declared as follows:

DCL RETURN FLOAT BIN(47):

PL/I: Integer or Character Array

FTN and F77: Integer Arrays

An integer array expected by a FORTRAN subroutine should be declared in
PL/I either as an array of FIXED BINARY(15) elements, or as a character
array, depending on the kind of information to be passed.

If the subroutine parameter is a character array, you can declare it
either as CHAR (n) NONVARYING or as CHAR(*) NONVARYING.
Multidimensional arrays cannot be passed between FORTRAN (FTN or F77)
and PL/I, because columns and rows would be reversed.

For example, a PL/I program that calls function DELESA must declare
data types that correspond to the data types in the function’s
description, as follows:

INTEGER*2 name(l), namlen
LOGICAL log

The following PL/I statement declares DELESA as an external function
with arguments that correspond in type to the types declared in the
function’s description above. The CHAR(8) argument 1is a string of
eight characters.

DCL DELE$A EXTERNAL ENTRY (CHAR(8),FIXED BIN)
RETURNS (FIXED BIN) ;

The following PL/I statements call DELES$A and specify the action to be
taken when DELES$A returns 1 and the action to be taken when it returns
a value other than 1:

IF DELESA (’OBSOLETE’, 8) = 1 THEN
PUT SKIP LIST ('FILE DELETED'):;
ELSE PUT SKIP LIST ('NO GO’);

8-7 Second Edition

SUBROUTINES, VOLUME I

PL/I: FIXED BIN(15)
FTN: LOGICAL
F77: LOGICAL*2

The PL/I data type FIXED BIN(15) can be used as an equivalent of the
FTN data type LOGICAL and to the F77 data type LOGICAL*2. Arguments
declared as LOGICAL or LOGICAL*2 must have a value of 0 (false) or 1
(true) .

The example in the section above concerning PL/I integer and character
arrays illustrates a call to a function, DELESA, that returns a LOGICAL
value.

PL/I: CHAR(n) NONVARYING or literal
FTN: ASCII Character (String or Array)

An ASCII string expected by a subroutine should be declared in PL/I as
CHAR (n) NONVARYING or passed as a literal.

Second Edition 8-8

J) J

N D

9
Calling Subroutines
From PMA

CALL FORMAT

To call a subroutine from a program written in PMA, use a statement of
the following form:

CALL sub-name

The CALL statement is followed on succeeding lines by statements that
list the arguments to be passed. The succeeding statements begin with
AP (address-pointer), followed by S or SL, as discussed in the
following section.

You can also use the PCL machine instruction to «call subroutines.
However, the PCL instruction requires that you declare the subroutine
as an external subroutine by means of the EXT statement, and that you
code the pointers to the subroutine. Thus, the CALL statement provides
the more convenient way to call subroutines from PMA.

Functions should be called from PMA as 1f they were subroutines.
However, not all functions can be called in this way. If the function
has an OPTIONAL RETURNED ARGUMENT, you can call the function as a
subroutine. If the function has a RETURNED ARGUMENT, you cannot call
the function as a subroutine.

For more information about how to call subroutines from PMA, see the
Advanced Programmer’s Guide and Chapter 12 of the Assembly Language

Programmer’s Guide.

9-1 Second Edition

SUBROUTINES, VOLUME I

CALLING SUBROUTINES FROM V-MODE AND I-MODE PMA

When PMA calls an external subroutine in V mode or I mode, arguments
are passed by reference using the AP instruction. Each AP instruction
except the 1last one in a call uses S as its second operand; the last
AP instruction uses SL. All examples in this chapter can be used
either in V mode or in I mode.

CALLING SUBROUTINES FROM R-MODE PMA

When PMA calls an external subroutine in R mode, arguments are passed
by reference using the DAC pseudo-operation. If there is more than one
argument, the last DAC pseudo-operation is followed by DATA 0. This is
a convention of the operating system, not an architectural feature. If
there is only one argument, DATA 0 must not be used.

USING SYSCOM FILES

You can insert the SYSCOM file that defines error codes into a PMA
program by including the following statement in the program.

SINSERT ’SYSCOM>ERRD.INS.PMA’;

You can insert the SYSCOM file that defines key codes into a PMA
program by including the following statement in the program.

SINSERT ’‘SYSCOM>KEYS.INS.PMA';

Programs written in PMA cannot use the argument keys defined in the
SYSCOM files; the numeric equivalents of these keys must be used
instead. To learn the numeric equivalents of the argument keys, 1list
the file SYSCOM>ASKEYS.INS.FTN, or any of the other SYSCOM files that
define argument keys. For more information about argument keys, see
Chapter 2 of this volume.

Second Edition 9-2

J

)

J

D

Ny D

CALLING SUBROUTINES FROM PMA

DATA TYPES

The following sections describe the argument types of FORTRAN and PL/I
subroutines that can be called from PMA. For more information about
each data type, refer to the Assembly Language Programmer’s Guide, or
to the chapter titled "Overview of Subroutines" in Volume II, 1III, or
IV of this guide.

PMA: BSS pseudo-operation

FIN or F77: INTEGER*2
PL/I: FIXED BIN(15)

The FTN and F77 data type INTEGER*2 and the PL/I data type FIXED
BIN(15), also called FIXED BIN, can be declared in PMA with the BSS
pseudo-operation.

For example, the subroutine TEXTO$ expects four arguments, of the data
types integer array, INTEGER*2, INTEGER*2, and LOGICAL. A PMA program
that calls this subroutine must pass it arguments of the corresponding
data types. The following EXT instruction declares TEXT0$ as an
external subroutine; this instruction 1is required only when the
subroutine is called by a PCL instruction, as in this example:

EXT TEXTOS

The following PMA statements declare the data types of the last two
arguments of TEXTOS:

LEN DATA 6 INTEGER*2 ARGUMENT
OK BSS 1 LOGICAL ARGUMENT

The following statement calls TEXTO$, with the first two arguments
specified as literals:

EXT TEXTOS$

MAIN PCL TEXT_IP, *
AP =C’CTRLFL’,S
AP =6,S
AP LEN, S
AP OK, SL
TEXT_IP 1IP TEXTOS$

9-3 Second Edition

SUBROUTINES, VOLUME I

Note

Although BSS is ordinarily used in PMA to declare an INTEGER*2
parameter, the DYNM, BSZ, OCT, DEC, HEX, or DATA instructions
could also be used. For information about these instructions,
see the Assembly Language Programmer’s Guide and the
Instruction Sets Guide.

PMA: BSS 2 pseudo-operation
FTN or F77: INTEGER*4
PL/I: FIXED BIN(31l)

The FTN and F77 data type INTEGER*4 and the PL/I data type FIXED
BIN(31) are defined in PMA with the BSS 2 pseudo-operation.

For example, the subroutine RNUMSA expects four arguments of the
types INTEGER*2, INTEGER*2, INTEGER*2, and INTEGER*4. A PMA
program that calls RNUM$A must declare data types that correspond
to those expected by the subroutine.

The following PMA statements declare the data types of the last two
arguments of RNUMS$A:

ASBIN DATA 9 INTEGER*2 ARGUMENT
ITEM BSS 2 INTEGER*4 ARGUMENT

The first two arguments can be specified as literals in the call to
RNUMSA, as follows:

STRT CALL RNUMSA CALL SUBROUTINE TO ACCEPT NUMBER
AP =C’ENTER A NUMBER',S
AP =14,S MESSAGE LENGTH
AP ASBIN,S SYSCOM>ASKEY FOR BINARY
AP ITEM,SL RETURNED VALUE
Note

Although BSS 2 is ordinarily used in PMA to declare an
INTEGER*4 parameter, it is also possible to use the DYNM x

(2) or DATA xxxxL instructions. For information about
these instructions, see the Assembly Language Programmer’s
Guide.

Second Edition 9-4

J

J

D

YD

CALLING SUBROUTINES FROM PMA

PMA: Declared using DEC statement

FTN: LOGICAL

F77: LOGICAL*2

The PMA DEC statement can be used to declare the FTN data type LOGICAL
and the F77 data type LOGICAL*2. Both LOGICAL and LOGICAL*2 specify a
1l6-bit integer, with a value of 1 for true or 0 for false.

For example, the following PMA statement declares the variable L as a
16-bit halfword and initializes the variable to 0:

L DEC 0

For another example of how to declare a LOGICAL parameter in PMA, see
the section above that describes how to declare INTEGER*2 parameters.

PMA: BSS 2 pseudo-operation

FTN or F77: REAL*4 or REAL

PL/I: FLOAT BIN(23) or FLOAT BIN

The FIN and F77 data types REAL and REAL*4, and the PL/I data type
FLOAT BIN(23) or FLOAT BIN, can be declared in PMA with the BSS 2
pseudo-operation.

For example, the function DTIMSA expects an INTEGER*4 argument and the
function’s value is received by a variable that must be REAL*4 or
REAL*8. The following statements declare these data types for the two
variables:

DSKTIM BSS 2 INTEGER*4 ARGUMENT
RTVAL BSS 2 REAL*4 ARGUMENT
Note

Although BSS 2 is ordinarily wused in PMA to declare a
REAL*4 parameter, it 1is also possible to use the DATA
pseudo-operation to define the parameter as a data item
with a decimal point or scientific notation (nnEnn). For
information about these instructions, see the Assembly
Language Programmer’s Guide.

9-5 Second Editicn

SUBROUTINES, VOLUME I

PMA: BSS 4 pseudo-operation
FTN and F77: REAL*8
PL/I: FLOAT BIN(47)

The FTN and F77 data type REAL*8 and the PL/I data type FLOAT BIN(47)
can be declared in PMA with the BSS 4 pseudo-operation.

For example, the function CTIMS$A expects an argument of the data type
INTEGER*4 and its value 1is received by a variable of the data type
REAL*8:

CPUTIM BSS 2 INTEGER*4 ARGUMENT
RTVAL BSS 4 REAL*8 ARGUMENT

Note

Although BSS 4 is ordinarily wused in PMA to declare a
REAL*§ parameter, it is also possible to use the
pseudo-operator DATA to declare the parameter as a data
item with a decimal point or scientific notation and with
(nnDnn) appended to it. For information about these
instructions, see the Assembly Language Programmer’s Guide.

PMA: Quad precision nnQnn format
F77: REAL*16

The PL/I data type REAL*16 is a quad precision floating-point number,
implemented as a 128-bit value. It corresponds to the PMA format
nnonn, but can be passed to and from F77 only as a REAL*16 number. For
details, see the Assembly Language Programmer’s Guide.

PMA: Alphabetic or Integer Array
FTN or F77: Integer Array

An integer array in FTIN or F77 can contain either alphabetic or numeric
data. This may be passed as any data type.

For example, the subroutine TIMDAT expects two arguments, as indicated
by the following DCL statement:

DCL TIMDAT (l1l..., FIXED BIN)

The first argument is an array to which TIMDAT is to return system and
user information, in alphabetic and numeric form. The second argument
is an integer value which must be set to 28. The first statement below
declares the data type of variable string. TIMDAT writes system and

Second Edition 9-6

J

N

CALLING SUBROUTINES FROM PMA

user information into string. The second statement assigns num the
value 28.

STRING BSS 28
NUM EQU 28

The following statements call TIMDAT with the arguments defined above:

CALL TIMDAT
AP STRING, S
AP NUM, SL

PMA: C-string or BCI-string
FTN or F77: ASCII character string

ASCII characters can be passed to a FORTRAN subroutine as a constant
string after the DATA statement. The string can be preceded by =C and
enclosed in single quotation marks; for example, DATA =C’STEP 1’. The
string can also be wused in a BCI statement and enclosed by any
delimiter. The maximum number of characters after C is 32. After BCI,
you can use as many characters as fit on the same statement line.

For example, the subroutine SRCH$$ expects to receive arguments of the
data types indicated by the following DCL statement:

DCL SRCHSS ENTRY (FIXED BIN, CHAR(32) VAR, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

In the DCL statement, the CHAR(32) VAR parameter is an ASCII character
string to be passed to SRCHS$S.

The following statements call subroutine TNOUA to display the message
CODE; the first AP statement defines the text of the string, and the
second AP statement specifies the number of characters in the string:

MAIN CALL TNOUA
AP =C’CODE ’,S
AP =5,SL

The following statement inserts the SYSCOM>KEYS.INS.PMA file into
program SRCH:

9-7 Second Edition

SUBROUTINES, VOLUME I

SINSERT SYSCOM>KEYS.INS.PMA

The following statements call subroutine SRCHS$$ to verify that CTRLFL
exists in the UFD to which the user is attached:

CALL SRCHSS

AP =K$EXST+KS$IUFD, S
AP =C’CTRLFL’,S

AP =6,85

AP =0,8

AP =0,S

AP CODE, SL

The code that calls subroutine SRCH$$ uses the following statement to
define the ASCII character string that gives the filename.

AP =C’CTRLFL’,S

PMA: Record structure
PL/I: CHARACTER (*)VARYING

The PL/I data type CHARACTER(*)VARYING is implemented as a record
structure containing a count of characters followed by the characters
themselves. The record structure can be pictured as follows:

5{A|B|JC|DYJE

Count Character String

Figure 9-1
CHAR(*) VAR Record Structure

For example, a PMA program that calls subroutine GVSGET must declare
data types that correspond to the types declared in the subroutine’s
DCL statement, as follows:

DCL GV$GET ENTRY (CHAR(*)VAR, CHAR(*) VAR,
FIXED BIN, FIXED BIN);

Second Edition 9-8

J

J

J

D

A |

CALLING SUBROUTINES FROM PMA

The following PMA statement calls GVSGET with four arguments, each
specified by an AP statement.

MAIN CALL GVSGET
AP NAME, S CHAR*VAR ARGUMENT
AP VAL, S CHAR*VAR RETURN ARGUMENT
AP SIZE,S ONE-WORD ARGUMENT
AP CODE,SL ONE-WORD RETURN ARGUMENT

The following PMA statements declare data types for the arguments
specified in the CALL statement above. Note how the
CHARACTER (*) VARYING arguments are defined as structures consisting of
one-word integers followed by character strings.

NAME DATA 4 ONE-WORD INTEGER +
BCI ’ .MAX’ FOUR-CHAR NAME
VAL DATA 4 ONE-WORD INTEGER (SUPPLIED) +
BSS 2 FOUR-CHARACTERS RETURNED
SIZE DATA 4 16-BIT INTEGER
CODE BSS 1 16-BIT INTEGER

PMA: DATA C’xxX...’ or literal

F77: CHARACTER*n

PL/I: CHARACTER (n) NONVARYING

The PL/I data type CHARACTER(n)NONVARYING, usually declared as
CHARACTER(n), and the F77 data type CHARACTER*n both <consist of n

characters. These data types can be declared in PMA as DATA C’xxxX...',
or passed as literals. Either item should be n characters long.

PMA: 16-bit integer
PL/I: BIT(1l) ALIGNED

PL/I programs that expect arguments of this type should not be called
from PMA unless the argument is declared in PL/I as BIT(l) ALIGNED. If
the argument is declared as BIT(l) ALIGNED, it can be treated as a
16-bit integer, with a value of -1 for false.

9-9 Second Edition

D)

3 3

APPENDICES

9

AR

INTERNAL SUBROUTINES

A
FORTRAN
Internal Subroutines

The following subroutines are used internally by the FORTRAN compiler.

They may be

some valu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>